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About us: SML Journal Club.

The Journal Club structure is still under

discussion:
e Open to all interested people;
o Keep blended modality;

We are planning to have invited speakers;

e Once every two weeks, on Friday afternoon at
16:00 CET.

— You are welcome to have a drink with us after the talk session <
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e It is weak against noises and confounders;
e |t is not reusable;

e It does not allow any knowledge beyond

typically statistical reasoning.

On the other hand, we (humans) acquire
knowledge by:

[0 Understanding the relevant information,
even in noisy contexts;

© Being able to generalize outside the
distribution;

A We can infer causal, or physical, models out
of our observations: learning transferable
knowledge to other domains.

We focus on learning useful
representations of data.
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Representation Learning (2013)

Addressing the learning of factors of variation by extracting a useful representation of input data:

x—r(x) r:RY =R
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Representation Learning (2013)

Addressing the learning of factors of variation by extracting a useful representation of input data:
x—r(x) r:RY =R

Hypothesis: the intractable input distribution p(x) is originated from a simpler /atent distribution
p(z), such that:

p(x) = [ dzp(z)p(xi2)

where in Representation Learning p(x|z) := pg(x|z) is a conditional distribution " decoding” the
latent factors to the sensorial inputs.
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VAE and Disentangled Factors of Variations

It is generically difficult to understand useful latent
representations of data. We divide the the problem in two
pieces:

e Encoding ¢,(z|x), e.g. Convolutional NN.

e Decoding ps(x|z).
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It is generically difficult to understand useful latent
representations of data. We divide the the problem in two
pieces:

e Encoding ¢,(z|x), e.g. Convolutional NN.

e Decoding ps(x|z).

But when factors of variation z are useful? They must be
independent and represent a dimension over one change
occurs: in that case they are disentangled.

A Variational Auto-Encoder (VAE)
forces the learning of useful
representation by pushing the encoder
distribution to the chosen prior p(z),
e.g.:

p(z) = [ )

1
promotes the learning of independent
latent dimensions.

However this works only in few idealized
cases, and inferring a suitable prior for z
is referred as the prior hole problem!
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Levels of Causal Modelling

What can we learn out of data?

Model H Predict in i.i.d. ’ Predict under distr. | Answer counter- Obtain Learn from
setting shift/intervention factual questions | physical insight data
Mechanistic/physical yes yes yes yes ?
Structural causal yes yes yes ? ?
Causal graphical yes yes no 7 7
Statistical yes no no no yes
piotra) plotts)

@ fo®e® A
N

Statistical model
Causal model

e Interventions over causal
factors lead to a drift in the
observed distribution.

e Causal relations contain

more information than

statistical ones.
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Structural Causal Models

Let X = {X;}]_; a set of observables that form a direct acyclic graph (DAG):

Xi = fi(PA;, Uj), Vi = P(Xi,..., X)) = H P(Xi|PA;)

i=1

The probabilistic decomposition of P(Xi, ..., X,), given the DAG, is the causal factorization of the
ensemble X'. A Structural Causal model, also explains:

ay : change_job(developer)

o Interventions
' a; : get_degree(bachelor)
e Counterfactuals
@ @ as : change_house(buy)
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Indipendent Causal Mechanism Principle

The decomposition of the Structural Causal Model implies a structure of statistical independence
among variables (i # j):
P(Xi|PA;) 1L P(X;|PA;)
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Indipendent Causal Mechanism Principle

The decomposition of the Structural Causal Model implies a structure of statistical independence

among variables (i # j):
P(Xi|PA;) 1L P(X;|PA;)

1. no influence: changing one mechanism P(X;|PA;) does not change other mechanisms
P(Xj|PA));

2. no information: knowing some other mechanisms P(X;|PA;) does not give us information
about a mechanism P(X;|PA;).
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Machine Learning and Causality

Challenges:
e Infer causal variables from the available low-level input features;

e There is no consensus on which aspects of the data reveal causal relations.
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Learning Causal Representations

Learning disentangled representation of causal variables, e : RY — R” with n << d :
zZi = f,‘(PA,‘, U,) (i = 17 ceey n)

but PA; = 0, Vi. In practice a decoder d = p o f, learns a hierarchy of disentangled factors [2].
This depends on which interventions we observe = shift from usual i.i.d datasets [3]!

| |
| Downstream |
Tasks 1

Repr. \
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Learning Causal Representations

A priori, we must face the problem of what
representation preserves the causal structure
hidden on observations X.

of Coarse-graining

2385 OC

Protein crystal  Amino acids as Directed interactions: Particle shape/ ‘Spherical;

structure  spheres (color code:  Shape, number, size etc. anisotropy Isotropic
chargestate) of patches; nature & range interaction
of patch interactions. potential
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Learning Causal Representations

A priori, we must face the problem of what
representation preserves the causal structure

hidden on observations X. = ’
e Understand those coarse-graining maps ‘

preserving important relations, [4]. % u ‘:,o ‘
/0 Co
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e Semi-Supervised Learning: X — Y, SCM: P(X,Y) = P(X)P(Y|X) but there is no
information of P(Y|X) from P(X). In the anti-causal direction there can be information:

Y = X, P(X) I P(Y|X)

e Robustness and strong generalization: learning autonomous modules to aid generalization
out of distribution P(X, Y) — PT(X, Y), this is important for strategic behaviour.

but also for Causal Discovery, Reinforcement Learning, Continual Learning and Scientific
Applications, [1].
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Conclusion

“Why can’t we just train a huge model that learns environments’ dynamics including
all possible interventions? After all, distributed representations can generalize to
unseen examples and if we train over a large number of interventions we may expect
that a big neural network will generalize across them”
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Conclusion

“Why can’t we just train a huge model that learns environments’ dynamics including
all possible interventions? After all, distributed representations can generalize to
unseen examples and if we train over a large number of interventions we may expect
that a big neural network will generalize across them”

1. Causality offers an important complement: learn structures of data.

2. Generalization is tied to model's assumptions: in causal setting they become
more explicit.
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Thank you for listening!
and
Stay in contact with us!

Emanuele Marconato

emanuele.marconatoQ@unitn.it
http://sml.disi.unitn.it/
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