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About us: SML Journal Club.

The Journal Club structure is still under

discussion:

• Open to all interested people;

• Keep blended modality;

• We are planning to have invited speakers;

• Once every two weeks, on Friday afternoon at

16:00 CET.

→ You are welcome to have a drink with us after the talk session ←
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Motivation

Limitations of Machine Learning:

• It is rooted on the I .I .D. hypothesis and

does not work well outside it;

• It is weak against noises and confounders;

• It is not reusable;

• It does not allow any knowledge beyond

typically statistical reasoning.

On the other hand, we (humans) acquire

knowledge by:

□ Understanding the relevant information,

even in noisy contexts;

⊚ Being able to generalize outside the

distribution;

△ We can infer causal, or physical, models out

of our observations: learning transferable

knowledge to other domains.

We focus on learning useful

representations of data.
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Representation Learning (2013)

Addressing the learning of factors of variation by extracting a useful representation of input data:

x → r(x) r : Rd → Rn.

Hypothesis: the intractable input distribution p(x) is originated from a simpler latent distribution

p(z), such that:

p(x) =

∫
dz p(z)p(x|z)

where in Representation Learning p(x|z) := pθ(x|z) is a conditional distribution ”decoding” the

latent factors to the sensorial inputs.

5 / 16



Representation Learning (2013)

Addressing the learning of factors of variation by extracting a useful representation of input data:

x → r(x) r : Rd → Rn.

Hypothesis: the intractable input distribution p(x) is originated from a simpler latent distribution

p(z), such that:

p(x) =

∫
dz p(z)p(x|z)

where in Representation Learning p(x|z) := pθ(x|z) is a conditional distribution ”decoding” the

latent factors to the sensorial inputs.

5 / 16



VAE and Disentangled Factors of Variations

It is generically difficult to understand useful latent

representations of data. We divide the the problem in two

pieces:

• Encoding qϕ(z|x), e.g. Convolutional NN.

• Decoding pθ(x|z).

But when factors of variation z are useful? They must be

independent and represent a dimension over one change

occurs: in that case they are disentangled.

A Variational Auto-Encoder (VAE)

forces the learning of useful

representation by pushing the encoder

distribution to the chosen prior p(z),

e.g.:

p(z) =
∏
i

p(zi )

promotes the learning of independent

latent dimensions.

However this works only in few idealized

cases, and inferring a suitable prior for z

is referred as the prior hole problem!
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Levels of Causal Modelling

What can we learn out of data?

• Interventions over causal

factors lead to a drift in the

observed distribution.

• Causal relations contain

more information than

statistical ones.
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Structural Causal Models

Let X = {Xi}ni=1 a set of observables that form a direct acyclic graph (DAG):

Xi = fi (PAi ,Ui ), ∀i =⇒ P(X1, ...,Xn) =
n∏

i=1

P(Xi |PAi )

The probabilistic decomposition of P(X1, ...,Xn), given the DAG, is the causal factorization of the

ensemble X . A Structural Causal model, also explains:

• Interventions

• Counterfactuals
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Indipendent Causal Mechanism Principle

The decomposition of the Structural Causal Model implies a structure of statistical independence

among variables (i ̸= j):

P(Xi |PAi ) ⊥⊥ P(Xj |PAj)

1. no influence: changing one mechanism P(Xi |PAi ) does not change other mechanisms

P(Xj |PAj);

2. no information: knowing some other mechanisms P(Xi |PAi ) does not give us information

about a mechanism P(Xj |PAj).
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Machine Learning and Causality

Challenges:

• Infer causal variables from the available low-level input features;

• There is no consensus on which aspects of the data reveal causal relations.
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Learning Causal Representations

Learning disentangled representation of causal variables, e : Rd → Rn with n << d :

zi = fi (PAi ,Ui ) (i = 1, ..., n)

but PAi = ∅, ∀i . In practice a decoder d = p ◦ f , learns a hierarchy of disentangled factors [2].

This depends on which interventions we observe =⇒ shift from usual i.i.d datasets [3]!
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Learning Causal Representations

A priori, we must face the problem of what

representation preserves the causal structure

hidden on observations X.

• Understand those coarse-graining maps

preserving important relations, [4].

• Discover the conditional dependence among

latents factors zi , [5].
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Implications

• Semi-Supervised Learning: X → Y , SCM: P(X ,Y ) = P(X )P(Y |X ) but there is no

information of P(Y |X ) from P(X ). In the anti-causal direction there can be information:

Y → X , P(X ) ⊥⊥/ P(Y |X )

• Robustness and strong generalization: learning autonomous modules to aid generalization

out of distribution P(X ,Y ) → P†(X ,Y ), this is important for strategic behaviour .

but also for Causal Discovery, Reinforcement Learning, Continual Learning and Scientific

Applications, [1].
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Conclusion

“Why can’t we just train a huge model that learns environments’ dynamics including

all possible interventions? After all, distributed representations can generalize to

unseen examples and if we train over a large number of interventions we may expect

that a big neural network will generalize across them”

1. Causality offers an important complement: learn structures of data.

2. Generalization is tied to model’s assumptions: in causal setting they become

more explicit.

14 / 16



Conclusion

“Why can’t we just train a huge model that learns environments’ dynamics including

all possible interventions? After all, distributed representations can generalize to

unseen examples and if we train over a large number of interventions we may expect

that a big neural network will generalize across them”

1. Causality offers an important complement: learn structures of data.

2. Generalization is tied to model’s assumptions: in causal setting they become

more explicit.

14 / 16



Conclusion

“Why can’t we just train a huge model that learns environments’ dynamics including

all possible interventions? After all, distributed representations can generalize to

unseen examples and if we train over a large number of interventions we may expect

that a big neural network will generalize across them”

1. Causality offers an important complement: learn structures of data.

2. Generalization is tied to model’s assumptions: in causal setting they become

more explicit.

14 / 16



References

Towards Causal Representation Learning

Bernard Scholkopf et al. (2021), arXiv:2102.11107.

Structure by Architecture: Disentangled Representations without Regularization

Felix Leeb et al. (2021), arXiv:2006.07796.

CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and Transfer Learning

Ossama Ahmed et al. (2020), arXiv:2010.04296.

Multi-Level Cause-Effect Systems.

Krzysztof Chalupka et al. (2015), arXiv:1512.07942.

Measuring Statistical Dependence with Hilbert-Schmidt Norms

Artur Gretton et al. (2005), Springer Berlin Heidelberg.

15 / 16



Thank you for listening!

and

Stay in contact with us!

Emanuele Marconato

emanuele.marconato@unitn.it

http://sml.disi.unitn.it/
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