Causal Representation Learning

SML Journal Club

Emanuele Marconato

University of Pisa, Department of Computer Science University of Trento, Department of Information Engineering and Computer Science

About us: SML Journal Club.

The Journal Club structure is still under discussion:

- Open to all interested people;
- Keep blended modality;
- We are planning to have invited speakers;
- Once every two weeks, on Friday afternoon at 16:00 CET.

 \rightarrow You are welcome to have a drink with us after the talk session \leftarrow

- Motivation and key-challenges.
- 1. Representation Learning as first conceived.
- 2. Two different directions: Machine Learning and Causality.
- 3. Causal Representation Learning: a reunion?

Bernhard Schölkopf[†], Francesco Locatello[†], Stefan Bauer^{*}, Nan Rosemary Ke^{*}, Nal Kalchbrenner Anirudh Goyal, Yoshua Bengio

- Motivation and key-challenges.

- 1. Representation Learning as first conceived.
- 2. Two different directions: Machine Learning and Causality.
- 3. Causal Representation Learning: a reunion?

- Motivation and key-challenges.
- 1. Representation Learning as first conceived.
- 2. Two different directions: Machine Learning and Causality.
- 3. Causal Representation Learning: a reunion?

- Motivation and key-challenges.
- 1. Representation Learning as first conceived.
- 2. Two different directions: Machine Learning and Causality.
- 3. Causal Representation Learning: a reunion?

- Motivation and key-challenges.
- 1. Representation Learning as first conceived.
- 2. Two different directions: Machine Learning and Causality.
- 3. Causal Representation Learning: a reunion?

Limitations of Machine Learning:

- It is rooted on the *I.I.D.* hypothesis and does not work well outside it;
- It is weak against noises and confounders;
- It is not reusable;
- It does not allow any knowledge beyond typically statistical reasoning.

On the other hand, we (humans) acquire knowledge by:

- Understanding the relevant information, even in noisy contexts;
- Being able to generalize outside the distribution;
- We can infer causal, or physical, models out of our observations: learning transferable knowledge to other domains.

Limitations of Machine Learning:

- It is rooted on the *I.I.D.* hypothesis and does not work well outside it;
- It is weak against noises and confounders;
- It is not reusable;
- It does not allow any knowledge beyond typically statistical reasoning.

On the other hand, we (humans) acquire knowledge by:

- Understanding the relevant information, even in noisy contexts;
- Being able to generalize outside the distribution;
- We can infer causal, or physical, models out of our observations: learning transferable knowledge to other domains.

Limitations of Machine Learning:

- It is rooted on the *I.I.D.* hypothesis and does not work well outside it;
- It is weak against noises and confounders;
- It is not reusable;
- It does not allow any knowledge beyond typically statistical reasoning.

On the other hand, we (humans) acquire knowledge by:

- Understanding the relevant information, even in noisy contexts;
- Being able to generalize outside the distribution;
- We can infer causal, or physical, models out of our observations: learning transferable knowledge to other domains.

Limitations of Machine Learning:

- It is rooted on the *I.I.D.* hypothesis and does not work well outside it;
- It is weak against noises and confounders;
- It is not reusable;
- It does not allow any knowledge beyond typically statistical reasoning.

On the other hand, we (humans) acquire knowledge by:

- Understanding the relevant information, even in noisy contexts;
- Being able to generalize outside the distribution;
- We can infer causal, or physical, models out of our observations: learning transferable knowledge to other domains.

Limitations of Machine Learning:

- It is rooted on the *I.I.D.* hypothesis and does not work well outside it;
- It is weak against noises and confounders;
- It is not reusable;
- It does not allow any knowledge beyond typically statistical reasoning.

On the other hand, we (humans) acquire knowledge by:

- Understanding the relevant information, even in noisy contexts;
- Being able to generalize outside the distribution;
- We can infer causal, or physical, models out of our observations: learning transferable knowledge to other domains.

Limitations of Machine Learning:

- It is rooted on the *I.I.D.* hypothesis and does not work well outside it;
- It is weak against noises and confounders;
- It is not reusable;
- It does not allow any knowledge beyond typically statistical reasoning.

On the other hand, we (humans) acquire knowledge by:

- Understanding the relevant information, even in noisy contexts;
- Being able to generalize outside the distribution;
- We can infer causal, or physical, models out of our observations: learning transferable knowledge to other domains.

Limitations of Machine Learning:

- It is rooted on the *I.I.D.* hypothesis and does not work well outside it;
- It is weak against noises and confounders;
- It is not reusable;
- It does not allow any knowledge beyond typically statistical reasoning.

On the other hand, we (humans) acquire knowledge by:

- Understanding the relevant information, even in noisy contexts;
- Being able to generalize outside the distribution;
- We can infer causal, or physical, models out of our observations: learning transferable knowledge to other domains.

Limitations of Machine Learning:

- It is rooted on the *I.I.D.* hypothesis and does not work well outside it;
- It is weak against noises and confounders;
- It is not reusable;
- It does not allow any knowledge beyond typically statistical reasoning.

On the other hand, we (humans) acquire knowledge by:

- Understanding the relevant information, even in noisy contexts;
- Being able to generalize outside the distribution;
- △ We can infer causal, or physical, models out of our observations: learning transferable knowledge to other domains.

Limitations of Machine Learning:

- It is rooted on the *I.I.D.* hypothesis and does not work well outside it;
- It is weak against noises and confounders;
- It is not reusable;
- It does not allow any knowledge beyond typically statistical reasoning.

On the other hand, we (humans) acquire knowledge by:

- Understanding the relevant information, even in noisy contexts;
- Being able to generalize outside the distribution;
- △ We can infer causal, or physical, models out of our observations: learning transferable knowledge to other domains.

Addressing the learning of factors of variation by extracting a useful representation of input data:

$$\mathbf{x} \to r(\mathbf{x}) \quad r: \mathbb{R}^d \to \mathbb{R}^n.$$

Hypothesis: the intractable input distribution $p(\mathbf{x})$ is originated from a simpler *latent* distribution $p(\mathbf{z})$, such that:

$$p(\mathbf{x}) = \int d\mathbf{z} \, p(\mathbf{z}) p(\mathbf{x}|\mathbf{z})$$

where in Representation Learning $p(\mathbf{x}|\mathbf{z}) := p_{\theta}(\mathbf{x}|\mathbf{z})$ is a conditional distribution "decoding" the latent factors to the sensorial inputs.

Addressing the learning of factors of variation by extracting a useful representation of input data:

$$\mathbf{x} \to r(\mathbf{x}) \quad r: \mathbb{R}^d \to \mathbb{R}^n.$$

Hypothesis: the intractable input distribution $p(\mathbf{x})$ is originated from a simpler *latent* distribution $p(\mathbf{z})$, such that:

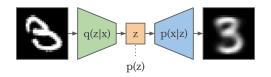
$$p(\mathsf{x}) = \int d\mathsf{z} \, p(\mathsf{z}) p(\mathsf{x}|\mathsf{z})$$

where in Representation Learning $p(\mathbf{x}|\mathbf{z}) := p_{\theta}(\mathbf{x}|\mathbf{z})$ is a conditional distribution "decoding" the latent factors to the sensorial inputs.

It is generically difficult to understand useful latent representations of data. We divide the the problem in two pieces:

• Encoding $q_{\phi}(\mathbf{z}|\mathbf{x})$, e.g. Convolutional NN.

• Decoding $p_{\theta}(\mathbf{x}|\mathbf{z})$.



But when factors of variation z are useful? They must be independent and represent a dimension over one change occurs: in that case they are **disentangled**. A Variational Auto-Encoder (VAE) forces the learning of useful representation by pushing the encoder distribution to the chosen prior p(z), e.g.:

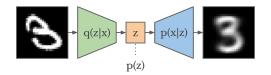
$$p(\mathbf{z}) = \prod_i p(\mathbf{z}_i)$$

promotes the learning of independent latent dimensions.

It is generically difficult to understand useful latent representations of data. We divide the the problem in two pieces:

• Encoding $q_{\phi}(\mathbf{z}|\mathbf{x})$, e.g. Convolutional NN.

• Decoding $p_{\theta}(\mathbf{x}|\mathbf{z})$.



But when factors of variation **z** are useful? They must be independent and represent a dimension over one change occurs: in that case they are **disentangled**.

A Variational Auto-Encoder (VAE) forces the learning of useful representation by pushing the encoder distribution to the chosen prior p(z), e.g.:

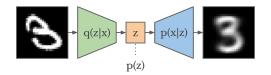
$$p(\mathbf{z}) = \prod_i p(\mathbf{z}_i)$$

promotes the learning of independent latent dimensions.

It is generically difficult to understand useful latent representations of data. We divide the the problem in two pieces:

• Encoding $q_{\phi}(\mathbf{z}|\mathbf{x})$, e.g. Convolutional NN.

• Decoding $p_{\theta}(\mathbf{x}|\mathbf{z})$.



But when factors of variation **z** are useful? They must be independent and represent a dimension over one change occurs: in that case they are **disentangled**.

A Variational Auto-Encoder (VAE) forces the learning of useful representation by pushing the encoder distribution to the chosen prior p(z), e.g.:

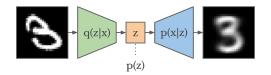
$$p(\mathbf{z}) = \prod_i p(\mathbf{z}_i)$$

promotes the learning of independent latent dimensions.

It is generically difficult to understand useful latent representations of data. We divide the the problem in two pieces:

• Encoding $q_{\phi}(\mathbf{z}|\mathbf{x})$, e.g. Convolutional NN.

• Decoding $p_{\theta}(\mathbf{x}|\mathbf{z})$.



But when factors of variation **z** are useful? They must be independent and represent a dimension over one change occurs: in that case they are **disentangled**.

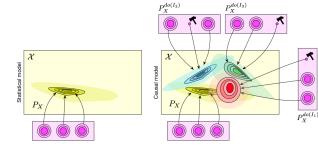
A Variational Auto-Encoder (VAE) forces the learning of useful representation by pushing the encoder distribution to the chosen prior p(z), e.g.:

$$p(\mathbf{z}) = \prod_i p(\mathbf{z}_i)$$

promotes the learning of independent latent dimensions.

What can we learn out of data?

Model	Predict in i.i.d. setting	Predict under distr. shift/intervention	Answer counter- factual questions	Obtain physical insight	Learn from data
				Fillingut	
Mechanistic/physical	yes	yes	yes	yes	?
Structural causal	yes	yes	yes	?	?
Causal graphical	yes	yes	no	?	?
Statistical	yes	no	no	no	yes



• Interventions over causal factors lead to a drift in the observed distribution.

• Causal relations contain more information than statistical ones.

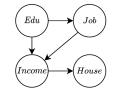
Structural Causal Models

Let $\mathcal{X} = \{X_i\}_{i=1}^n$ a set of observables that form a direct acyclic graph (DAG):

$$X_i = f_i(\mathbf{PA}_i, U_i), \forall i \implies P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | \mathbf{PA}_i)$$

The probabilistic decomposition of $P(X_1, ..., X_n)$, given the DAG, is the causal factorization of the ensemble \mathcal{X} . A Structural Causal model, also explains:

- Interventions
- Counterfactuals



 $a_1: get_degree(bachelor)$ $a_2: change_job(developer)$ $a_3: change_house(buy)$ The decomposition of the Structural Causal Model implies a structure of statistical independence among variables ($i \neq j$):

 $P(X_i | \mathbf{PA}_i) \perp P(X_j | \mathbf{PA}_j)$

- 1. no influence: changing one mechanism $P(X_i | \mathbf{PA}_i)$ does not change other mechanisms $P(X_j | \mathbf{PA}_j)$;
- 2. no information: knowing some other mechanisms $P(X_i | \mathbf{PA}_i)$ does not give us information about a mechanism $P(X_j | \mathbf{PA}_j)$.

The decomposition of the Structural Causal Model implies a structure of statistical independence among variables ($i \neq j$):

 $P(X_i | \mathbf{PA}_i) \perp P(X_j | \mathbf{PA}_j)$

- 1. no influence: changing one mechanism $P(X_i | \mathbf{PA}_i)$ does not change other mechanisms $P(X_j | \mathbf{PA}_j)$;
- 2. no information: knowing some other mechanisms $P(X_i | \mathbf{PA}_i)$ does not give us information about a mechanism $P(X_i | \mathbf{PA}_i)$.

The decomposition of the Structural Causal Model implies a structure of statistical independence among variables $(i \neq j)$:

 $P(X_i | \mathbf{PA}_i) \perp P(X_j | \mathbf{PA}_j)$

- 1. no influence: changing one mechanism $P(X_i | \mathbf{PA}_i)$ does not change other mechanisms $P(X_j | \mathbf{PA}_j)$;
- 2. no information: knowing some other mechanisms $P(X_i | \mathbf{PA}_i)$ does not give us information about a mechanism $P(X_i | \mathbf{PA}_j)$.

Challenges:

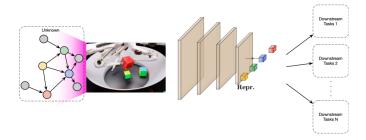
- Infer causal variables from the available low-level input features;
- There is no consensus on which aspects of the data reveal causal relations.

Learning Causal Representations

Learning disentangled representation of causal variables, $\mathbf{e} : \mathbb{R}^d \to \mathbb{R}^n$ with $n \ll d$:

$$z_i = f_i(\mathbf{PA}_i, U_i)$$
 $(i = 1, ..., n)$

but $\mathbf{PA}_i = \emptyset$, $\forall i$. In practice a decoder $\mathbf{d} = p \circ f$, learns a hierarchy of disentangled factors [2]. This depends on which *interventions* we observe \implies shift from usual i.i.d datasets [3]!

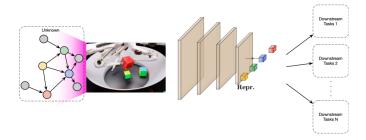


Learning Causal Representations

Learning disentangled representation of causal variables, $\mathbf{e} : \mathbb{R}^d \to \mathbb{R}^n$ with $n \ll d$:

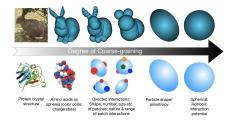
$$z_i = f_i(\mathbf{PA}_i, U_i)$$
 $(i = 1, ..., n)$

but $\mathbf{PA}_i = \emptyset$, $\forall i$. In practice a decoder $\mathbf{d} = p \circ f$, learns a hierarchy of disentangled factors [2]. This depends on which *interventions* we observe \implies shift from usual i.i.d datasets [3]!



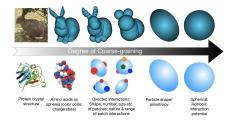
A priori, we must face the problem of what **representation** preserves the causal structure hidden on observations X.

- Understand those *coarse-graining* maps preserving important relations, [4].
- Discover the conditional dependence among latents factors *z_i*, [5].



A priori, we must face the problem of what **representation** preserves the causal structure hidden on observations X.

- Understand those *coarse-graining* maps preserving important relations, [4].
- Discover the conditional dependence among latents factors *z_i*, [5].



A priori, we must face the problem of what **representation** preserves the causal structure hidden on observations X.

- Understand those *coarse-graining* maps preserving important relations, [4].
- Discover the conditional dependence among latents factors *z_i*, [5].



$Y \to X$, $P(X) \not\perp P(Y|X)$

 Robustness and strong generalization: learning autonomous modules to aid generalization out of distribution P(X, Y) → P[†](X, Y), this is important for strategic behaviour.

$Y \rightarrow X$, $P(X) \not\perp P(Y|X)$

 Robustness and strong generalization: learning autonomous modules to aid generalization out of distribution P(X, Y) → P[†](X, Y), this is important for strategic behaviour.

$$Y \rightarrow X$$
, $P(X) \perp P(Y|X)$

 Robustness and strong generalization: learning autonomous modules to aid generalization out of distribution P(X, Y) → P[†](X, Y), this is important for strategic behaviour.

 Robustness and strong generalization: learning autonomous modules to aid generalization out of distribution P(X, Y) → P[†](X, Y), this is important for strategic behaviour.

"Why can't we just train a huge model that learns environments' dynamics including all possible interventions? After all, distributed representations can generalize to unseen examples and if we train over a large number of interventions we may expect that a big neural network will generalize across them"

- 1. Causality offers an important complement: learn structures of data.
- 2. Generalization is tied to model's assumptions: in causal setting they become more explicit.

"Why can't we just train a huge model that learns environments' dynamics including all possible interventions? After all, distributed representations can generalize to unseen examples and if we train over a large number of interventions we may expect that a big neural network will generalize across them"

- 1. Causality offers an important complement: learn structures of data.
- 2. Generalization is tied to model's assumptions: in causal setting they become more explicit.

"Why can't we just train a huge model that learns environments' dynamics including all possible interventions? After all, distributed representations can generalize to unseen examples and if we train over a large number of interventions we may expect that a big neural network will generalize across them"

- 1. Causality offers an important complement: learn structures of data.
- 2. Generalization is tied to model's assumptions: in causal setting they become more explicit.

References

Towards Causal Representation Learning Bernard Scholkopf et al. (2021), arXiv:2102.11107.

- Structure by Architecture: Disentangled Representations without Regularization Felix Leeb *et al.* (2021), arXiv:2006.07796.
- CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and Transfer Learning Ossama Ahmed *et al.* (2020), arXiv:2010.04296.
- Multi-Level Cause-Effect Systems.

Krzysztof Chalupka et al. (2015), arXiv:1512.07942.

Measuring Statistical Dependence with Hilbert-Schmidt Norms Artur Gretton *et al.* (2005), Springer Berlin Heidelberg.

Thank you for listening! and Stay in contact with us!

Emanuele Marconato

emanuele.marconato@unitn.it
http://sml.disi.unitn.it/