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Why do we need explanations (or XAl in general)?

Automated decision-making is already being used in many scenarios:

e Recidivism risk [Dressel & Farid, 2018]
e University admissions [Waters & Miikkulainen, 2014]
e Rejecting/Accepting a job applicant [Liem C.C.S. et al., 2018]

e Prescribing medications and treatments [Yoo et al., 2019]
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Why do we need explanations (or XAl in general)?
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Why do we need explanations (or XAl in general)?

- o

We want to understand:

Home  Checklist  FAQ News & Updates

1.  Why that decision was given General Data Protection Regulation (GDPR)

2. How to act to obtain a desired outcome e GDPR

The General Data Protection Regulation (GDPR) is the toughest privacy and secu
world. Though it was drafted and passed by the European Union (EU), it imposes

Chapter 1 (Art. 1-4) organizations anywhere, so long as they target or collect data related to people i

i v
Geners provisions regulation was put into effect on May 25, 2018. The GDPR will levy harsh fines ag
Chapter 2 (Art. 5-11) violate its privacy and security standards, with penalties reaching into the tens o
Principles M —

[Voigt and Von dem Bussche, 2017]
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Why do we need explanations (or XAl in general)?

l". 0 edible poisonous

e Example-based explanations .'"'

o  Prototype and criticism [Been et al., 2016]
e (Local/Global) Model-agnostic explanations SHAP

o  SHAP [Lundberg and Lee, 2017] Oupur204

o LIME [Ribeiro et al., 2016] e
e Counterfactual explanations [ s

o [Watcher et al., 2017] om0

e Interpretable Models (e.g., decision trees, linear models, GLM)

e Many more! See surveys on the topic [Adadi & Berrada, 2018]
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Counterfactual Explanations

A counterfactual explanation is a statement about “how the world would
have (had) to be different for a desirable outcome to happen”

[Watcher et al., 2017; Karimi et al., 2021]
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“If you had this profile, then we
would give you the loan”
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Counterfactual Explanations

Neural Network Classification

Nearest counterfactual explanations
are the most similar instances of the
feature vector, close to the original, that
changes the prediction of the classifier.

[Watcher et al., 2017; Karimi et al., 2021]

Images taken from Poyiadzi, Rafael, et al. "FACE: feasible
and actionable counterfactual explanations." Proceedings
of the AAAI/ACM Conference on Al, Ethics, and Society.
2020.
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Counterfactual Explanations

x:={xg,...,r,} XX X" = argmingc, d(X,x)
S.t.

h(x) # h(x')

h:X =Y Y={01)

[Watcher et al., 2017]
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Counterfactual Explanations

- CE are model-agnostic
- C(CE do not need to be actual instances from the training data
- CE are human-friendly explanations (both contrastive and selective)

- CE are “relatively” easy to find (e.g., minimizing a loss function)

[Molnar, 2019]
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Counterfactual Explanations [watcher et al., 2017]

L(x,x" 9y, \)=ANhE&)—vy)+dx,x)
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Counterfactual Explanations [watcher et al., 2017]

L(x,x" 9y, \)=ANhE&)—vy)+dx,x)

n / ’

, lz; — @
d(x,x') =) ]\J4ADJ. h(x) — | <e
j

j=1

x, 3/, A (or €) must be set in advance
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Counterfactual Explanations [watcher et al., 2017]

L(x,x" 9y, \)=ANhE&)—vy)+dx,x)

argming, . y maxyer L£(x,x,y’, A)
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Counterfactual Explanations

Many research works on how to build CE in the latest years:

Multi-objective Counterfactual Explanations [Dandl et al., 2020]
Counterfactual Explanations under uncertainty [Tsirtsis et al., 2021]
MACE [Karimi et al., 2020a]

LORE [Guidotti et al., 2018a]

DICE [Mothilal et al., 2020]

FACE [Poyiadzi et al., 2020]

Many surveys on the topic (e.g., [Guidotti et al., 2018b])
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Limitations of Counterfactual Explanations

=> Many CE are possible given a single user (Rashomon Effect)
- CEs provide no recommendations on how to reach the given CE states
= Translating from CEs to actions is not trivial for the user

- CEs do not consider feasibility or the user’s effort

[Molnar, 2019; Barocas et. al., 2020; Karimi et al., 2021; Venkatasubramanian & Alfano, 2020]
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Algorithmic Recourse

Algorithmic recourse is defined as “the systematic process of reversing
unfavourable decisions by algorithms and bureaucracies across a range of
counterfactual scenarios”

[Venkatasubramanian & Alfano, 2020; Karimi et al., 2021]
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Counterfactual Interventions

- Sequence of actions instead of just a counterfactual instance
= They define a cost to mimic the user’s effort for each action
- We minimize the cost of the sequence, given the previous constraints

- Preserve qualities of counterfactual explanations (e.g., model agnostic)

[Ustun et al., 2019; Karimi et al., 2020b; Naumann & Ntoutsi, 2021; Ramakrishnan et al., 2020]

Algorithmic Recourse and Explainable Counterfactual Interventions
@ UNIVERSITA

! . . - 20
SML Journal Club oz b D AN

25th February 2022



Counterfactual Interventions

T

[* = argmin; ; Z cost(a;, X;)

x:={xg,...,,} XEX i=0

h:X =Y Y={01) 50
./4 [ = {ai}?zo
a < Xt — [t—l(Xt—l)

cost : A x X — R h(I(xo)) # h(xo)

[Ustun et al., 2019; Karimi et al., 2020b; Naumann & Ntoutsi, 2021; Ramakrishnan et al., 2020]
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Counterfactual Interventions & Causality

C(a1,80) =5 0(0,2,81): C(a3,52) =3
' a; : get_degree(bachelor)

ay : change_job(developer) S0

2(s1)
a3 : change_house(buy)

C(a3,30): C’(ag,sl): C(a1,82)27

It is impossible to guarantee (optimal) recourse without accessing the true
structural equations of the causal model [Karimi et al., 2020a]

[Karimi et al., 2021; Naumann & Ntoutsi, 2021; De Toni et al., 2021]
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Counterfactual Interventions

There is a growing body of research focusing of Cl:

Recourse in linear classification [Ustun et al., 2019]
SYNTH [Ramakrishnan et al., 2020]

CSCF [Naumann & Ntoutsi, 2021]

FastAR [Verma et al., 2022]

See several surveys on the topic ( e.g., [Karimi et al., 2020b])
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CSCF [Naumann & Ntoutsi, 2021]

mln( 01 ) 02 sy 0241,.--,024h,--- 702+d)
S N~ N~ ~ o .
Sequence cost Gower’s distance Feature tweaking frequencies
s.t. f(xp) = accept and /\ C;
(a;,v;)ES

Images taken from Naumann, Philip, and Eirini Ntoutsi. "Consequence-aware Sequential Counterfactual Generation." Joint European
Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Cham, 2021.
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CSCF [Naumann & Ntoutsi, 2021]

Actions A Values V
Ay Ay Az Vsp1 Vapo Vayg . L) L4
c3 = 15 - 1.0 ¢y = 10-0.75 cg= 5 -1.0
Genotype G | 0.70 | 0.45 | 0.02 H 0.12 | 0.80 | 0.68 l 1 ] [ 2 | [ s ]
, . g . [ L3000) [ o o) | o) [
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=3 =12 t=3 T31 7-32 S XO xa x/2 XT
43 92 R0l ol L% ke B 10 Wess : =>| a3(xo) } {a%(xll : {a‘;’(xlz) I|
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P e ¥ ¢
0,10 DU -0 -l a-10
(as, 40), (a2, 3) ) by 92 by 93 by 91

Sequence § = (
(a) Feature relationship graph G (b) Different sequences S1 (red) and Sz (blue)

Fig. 3. Anatomy and representation of the solution decoding.

Images taken from Naumann, Philip, and Eirini Ntoutsi. "Consequence-aware Sequential Counterfactual Generation." Joint European
Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Cham, 2021.
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CSCF [Naumann & Ntoutsi, 2021]

00 SCF vs. SYNTH (Adult) CSCF vs. SYNTH (Adult) SCF vs. CSCF (Adult) SCF vs. SYNTH (German)
1 T T T T T T T T T T T T

75 | | | r'
50 F v 3 ‘ . F ‘ . r .
25 : 1 F | 1 F
J = scF (A) J = CSCF (A) J = scF (A) = scF (A)
0 =) S\NTH (B) ] [ = S\NTH (B) 1 i - mcr (B) ] i I- %Y\ITH (B) ]
—1.0— 0500 05 1.0-1.0 0500 ()5 1.0-1.0 05 0.0 05 1.0-1.0— 05 0.0 ()5 1.0
Relative Difference Relative Difference Relative Difference Relative Difference

Experiment

Fig. 4. Relative minimal sequence cost (01) differences between the three methods for
both datasets and solutions with 7' < 2. It is computed as: (B — A)/ max {A, B}.

Images taken from Naumann, Philip, and Eirini Ntoutsi. "Consequence-aware Sequential Counterfactual Generation." Joint European
Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Cham, 2021.
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Limitations of the Counterfactual Interventions

= Current methods relies on optimization techniques
- Run them ex-novo for each user (might be a costly process)
= Fail to explain why we are suggesting each intervention [Barocas et al., 2020]

-> Limitations of CFE-based recourse [Karimi et al., 2021]
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Counterfactual Interventions [De Toni et al., 2022]

1. Model architecture

( St+1 \

3. Intervention Example

v CHANGE_EDUCATION(bachelor)
* . 3 =
5.-- ]3| Binary RL (7Tfa7rz)t+1 Monte Carlo (f,z)! (f, JZ)O : job = wprker AND
! Encoder Agent Tree Search [ataay! ! L education = None )
A Y U !
Tt+1 Environment v CHANGE_HOUSE (own)
\4 onme (f )} - house = rent
\ / , AND job = worker
.. 1 - J
2. Training_step :
. U ~N
Compute the Store the (f,z)} :| 50000 <= income < 70000 AND
training loss correct not job = manager
traces - J/

Images taken from De Toni, Giovanni, Bruno Lepri, and Andrea Passerini. "Synthesizing explainable counterfactual policies for
algorithmic recourse with program synthesis." arXiv preprint arXiv:2201.07135 (2022).
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Counterfactual Interventions [De Toni et al., 2022]

1. Add nodes 2. Add transitions W L‘EdiCt CHANGE WORKCLASS(Private)
. not workclass = State-gov
’(-f’ 33)0 . AND 47 <= age < 61 AND
INTERVENE INTERVENE not occupation = Adm-clerical
—/ ) g
A(2)
B(1)
. (f ) . CHANGE_EDU(Prof-school)
A1) » L)1 not workclass=Federal-gov
c(7) - J
(3) - .
o(16) CHANGE_JOB(Prof-specialty)
workclass_Private

o (f $) . AND not relationship = Not-in-family
’ 2 - AND not occupation = Transport-moving
AND not occupation = Handlers-cleaners
\\ AND not occupation = ?

f STOP(0) )
occupation = Prof-specialty
AND 25 <= hours_per_week < 50
\?ND not marital_status = Never-married

c(5)
STOP
sToP

é'
—~~
S
8
w

Images taken from De Toni, Giovanni, Bruno Lepri, and Andrea Passerini. "Synthesizing explainable counterfactual policies for
algorithmic recourse with program synthesis." arXiv preprint arXiv:2201.07135 (2022).
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Counterfactual Interventions [De Toni et al., 2022]

10°

=
o
%

# of queries
=
o
s

103

german adult syn syn_long
dataset

L Mcscf L7/ S (train) . M, (predlct)
| Msmall | ] Mprog (train) | Mprog (predlct)

csef

Images taken from De Toni, Giovanni, Bruno Lepri, and Andrea Passerini. "Synthesizing explainable counterfactual policies for
algorithmic recourse with program synthesis." arXiv preprint arXiv:2201.07135 (2022).
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Future directions

- Learn costs and the causal graph in a data-driven way
- Deal with hidden confounders of the causal graph
= Human-in-the-loop Counterfactual Interventions

-=> Difference between model recommendation and decision

[Barocas et al., 2020; Karimi et al., 2021; Tsirtsis & Gomez-Rodriguez, 2020]
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Thank you!
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https://forms.gle/XS7YgDKU9hjigRSUA
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