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.. Why GNNs
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Transformers are Graph Neural
Networks

Exploring the connection between Transformer models such as

GPT and BERT for Natural Language Processing, and Graph Neural

Networks.
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Why GNNs
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Slide from https://petar-v.com/talks/MLPL-GNN.pdf
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2. Why XAl

Neural Networks achieve great performances in many tasks.
However, predictions are difficult to be interpreted (black box).

Horse -picture from Pascal VOC data set

Source tag
present

'

Classified
as horse

No source
tag present

'

Not classified
as horse

—~—

(b) Explanation

(a) Husky classified as wolf

Figure 11:
model’s prediction in the “Husky vs Wolf” task.

Unmasking Clever Hans predictors and assessing what machines really
learn. S. Lapuschkin et al, 2019

“Why Should | Trust You?” Explaining the Predictions of Any Classifier. M. T.
Ribeiro et al,, 2016

Raw data and explanation of a bad



2. Why XAl

Neural Networks achieve great performances in many tasks.
However, predictions are difficult to be interpreted (black box).

Ad-hoc methods are required to shed light over predictions:

1. CAM: Is Object Localization for Free? - Weakly-Supervised Learning With Convolutional Neural
Networks. M. Oquab et al, CVPR, 2015

2. LIME: “Why Should | Trust You?” Explaining the Predictions of Any Classifier. M. T. Ribeiro et al, ACM
SIGKDD, 2016

Integrated Gradients: Axiomatic Attribution for Deep Networks. M. Sundararajan, ICML, 2017
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3. XAl for GNNs

Also GNNSs are black box.
As for non-graph architectures, methods have been proposed to shed light over predictions:

Graph Neural Netwok
Explanations
Instance-level Model-level
Explanations Explanations

CGradients/Features) ( Perturbations ) C Decomposition Generation )
A v

GNNEXxplainer
SA PGExplainer
= LRP GraphLime
Guided BP Zonne Excitation BP RelEx XGNN

Surrogate

CAM GraphMask
Grad-CAM Causal Screening GNN-LRP PGM-Explainer

SubgraphX

Explainability in Graph Neural Networks: A Taxonomic Survey. H. Yuan et al., 2022
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3. XAl for GNNs

Also GNNs are black box.
As for non-graph architectures, methods have been proposed to shed light over predictions:
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3. XAl for GNNs

Local (or Instance-level) Explainers highlight
the input features most relevant for the

prediction of the model to explain

CGradients/ Feature:
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3. XAl for GNNs

Global (or Model-level) Explainers capture
the behaviour of the model as a whole,
abstracting individual noisy local explanations

Graph Neural Netwok
Explanations

( Model-level
i Expl
Why global explanations? planations

local explanations is hard: Decomposition )

Surrogate )
1) 1+ for every input sample
2) Often noisy ! !

3) Difficult quality evaluation'?
GraphLime
RelEx XGNN
PGM-Explainer

Global Explainers are seldom studied + mining

Generation

LRP
Excitation BP

A summarized view is amenable to a prompt GNN-LRP

debugging

1. When Comparing to Ground Truth is Wrong: On Evaluating GNN Explanation Methods. L. Faber et al., 2021
2. 0On Consistency in Graph Neural Network Interpretation. T. Zhao et al, 2022



3. XAl for GNNs

XGNN: Towards Model-Level Explanations of Graph Neural Networks
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XGNN: Towards Model-Level Explanations of Graph Neural Networks. H. Yuan et al., 2020



3. XAl for GNNs

XGNN: Towards Model-Level Explanations of Graph Neural Networks

Open challenges:
1. Graph rules require strong domain knowledge
2. Explanations not faithful to the data domain

Graph set
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(——/") observation
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Generated
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XGNN: Towards Model-Level Explanations of Graph Neural Networks. H. Yuan et al., 2020



Proposed solution

GLGExplainer (Global Logic-based GNN Explainer)




4, GLGExplainer

GLGEXxplainer in short:
1. Extract local explanations with a local explainer
2. Run GLGExplainer over those local explanations
3. Inspect the generated logic formulas summarizing the behaviour of the
GNN in terms of human-understandable concepts

GN N Predictions

Local Explainer GLGEXxplainer

Logic
Formulas

Dataset

Global Explainability of GNNs via Logic Combination of Learned Concepts. S. Azzolin et al, 2022
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4, GLGEXplainer
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4, GLGExplainer

Formulas Learning:
1. Discretize concept vectors
a. promotes discreteness of formulas
b. promotes formulas-MLP alignment
2.  Pooling of concept activations of the same input sample
3. Feed the E-LEN with the pooled concept vector
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4, GLGExplainer

E-LEN (Entropy-based Logic Explained Network):
1. Fully-connected layer with steroids
2. Applies entropy regularization for concept
selection
3. Builds a Truth Table T for each output class that
will be used to extract the final formulas

Concept Projection Formulas Learning M
10 TN
‘Learned concepts ﬁl
I
& .eZ ZQ Softmax Discretization Pooling |
Xpl \L, \e,
: " ¥, ¥, ELEN )|
" L5 |
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y 0] |
p3 I
7 .el
Logic formula Prediction |

Entropy-based Logic Explanations of Neural Networks. P. Barbiero et al, 2022



4, GLGExplainer

GLGExplainer is trained end-to-end with, as losses:
1. CELoss between E-LEN predictions and GNN
predictions (surrogate 0ss)

: 1 — _
2. Distance loss to push every prototype to be close to Lpi = —» min|p; — h(G)|
at least one local explanation M= 9eP
3. Distance loss to push every local explanation to be 5
D ! P Ly = § : min [lp; ~ H(G)
close to at least one prototype ]D\ j€[1,m

—-> No supervision on the concepts, which emerge
as prototypical representations of local explanations

Deep learning for case-based reasoning through prototypes: A neural network that explains its predictions. O. Li et al,, 2018
This looks like that: Deep learning for interpretable image recognition. C. Chen et al,, 2019
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1. BAMultiShapes Dataset
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0. Results

2. GNN to explain

Split BAMultiShapes

- 3-layers GCN (20-20-20) with mean pooling Train 0.94
- Single FC layer for graph predictions Val 0.94
Test 0.99
| Class 0 | Class 1
Motifs O H G W Al H+G H+W G+W

Accuracy (%) 1.0 1.0 085 1.0 0.0 1.0 0.98 1.0

Semi-Supervised Classification with Graph Convolutional Networks. T. Kipf et al. 2022



0. Results

3. XGNN
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4.

0. Results
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0. Results

4. GLGExplainer
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Conclusions




Conclusions

Main contributions:
1. Global Explainer for GNNs which
a. provides logic formulas
I.  more informative than previous
SOTA
b. faithful to the data domain

2. Unsupervised algorithm for concept discovery
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Global Explainability of GNNs via Logic Combination of Learned
Concepts. S. Azzolin et al, 2022. ICLR2023



