

TABLE OF CONTENTS

01 etworks mot

02

03

Networks motifs Tempor

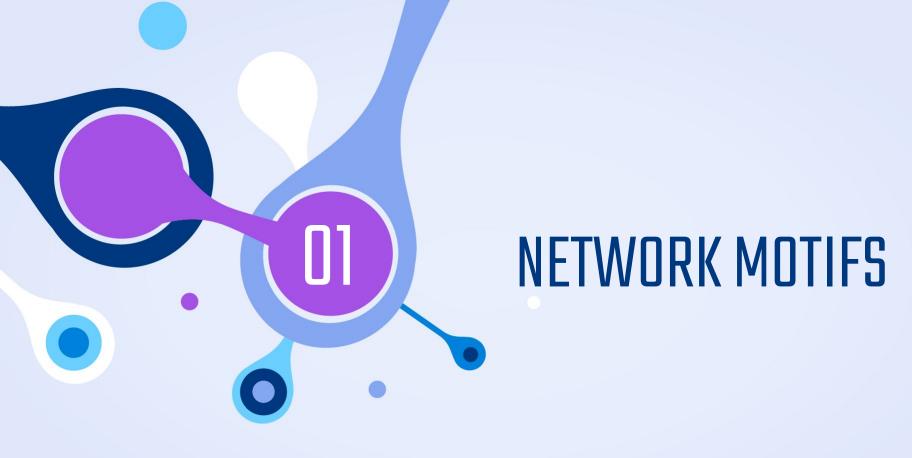
Temporal Network motifs

Egocentric Temporal Motifs

04Applications

05

Future directions

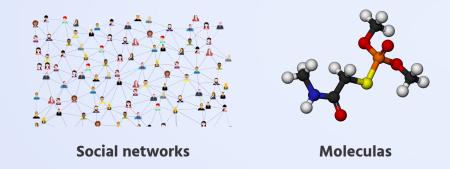


Network:

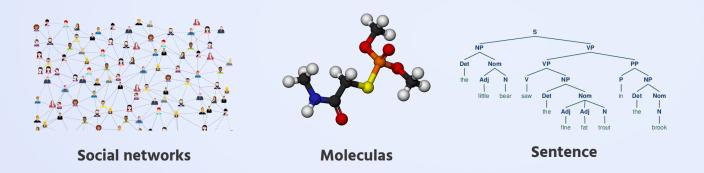
Network:

Social networks

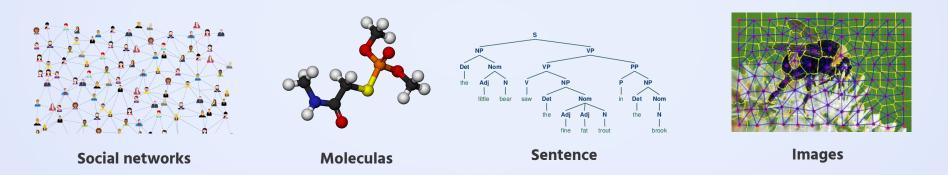
Network:

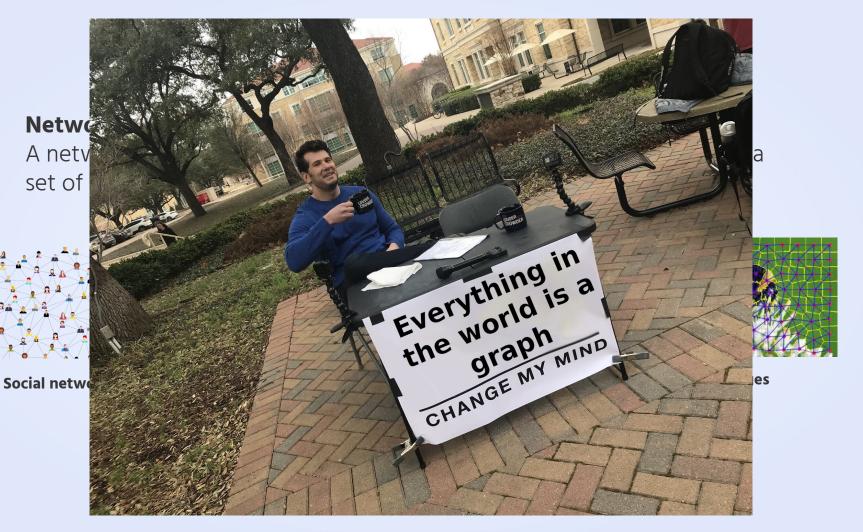


Network:



Network:





How can we study networks?

How can we study networks?

Topology

...

Many properties: Degree, clustering, assortativity, connectivity,

How can we study networks?

Topology Many properties: Degree, clustering, assortativity, connectivity, ... Dynamic simulations Simulate an epidemic in a network. (R0, infected individuals, ...)

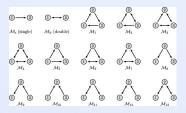
are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

Procedure

1) Count all possible substructure of a given network.

Input network

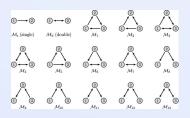


Subgraph counts

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.

Input network



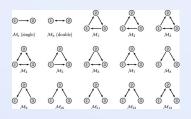
Subgraph counts

Null model

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

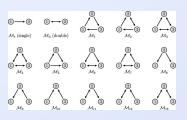
- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.
- 3) Count all possible substructure in the generated networks

Input network



Subgraph counts

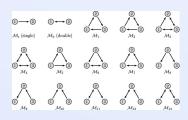
Null model



are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

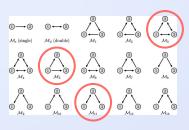
- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.
- B) Count all possible substructure in the generated networks
- 4) Check for those substructure that are:
 - 1. Over-represented
 - 2. Minimum deviation
 - 3. Minimum frequency

Input network



Subgraph counts

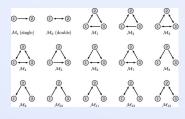
Null model



are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

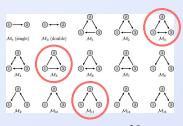
- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.
- 3) Count all possible substructure in the generated networks
- 4) Check for those substructure that are:
 - 1. Over-represented
 - 2. Minimum deviation
 - 3. Minimum frequency
- 5) Those structure are the motifs of the network.

Input network



Subgraph counts

Null model

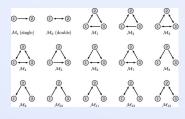


Network motifs

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

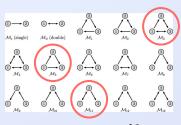
- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.
- 3) Count all possible substructure in the generated networks
- 4) Check for those substructure that are:
 - 1. Over-represented
 - 2. Minimum deviation
 - 3. Minimum frequency
- 5) Those structure are the motifs of the network.

Input network



Subgraph counts

Null model



Network motifs

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

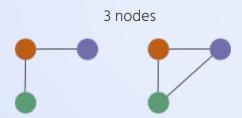
Procedure

- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.
- 3) Count all possible substructure in the generated networks

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

Procedure

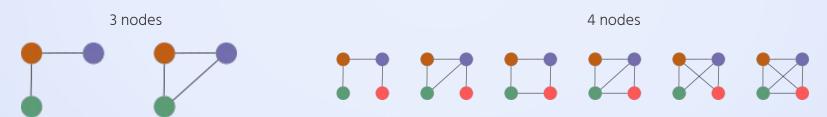
- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.
- 3) Count all possible substructure in the generated networks



are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

Procedure

- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.
- 3) Count all possible substructure in the generated networks

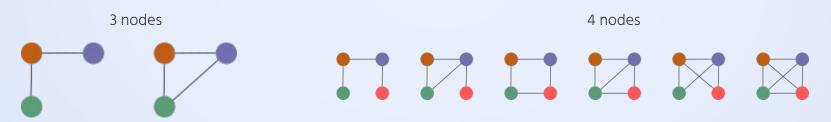


are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

Procedure

- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.
- 3) Count all possible substructure in the generated networks

How many substructure are there?



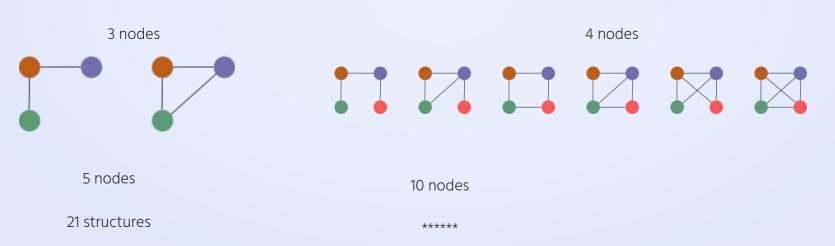
5 nodes

21 structures

are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

Procedure

- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.
- 3) Count all possible substructure in the generated networks

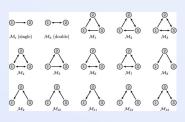


are **subgraphs**, that **appear** in an observed network **significantly more often** than in compatible randomized networks.

Procedure

- 1) Count all possible substructure of a given network.
- 2) Generate networks similar to the input one.
- 3) Count all possible substructure in the generated networks
- 4) Check for those substructure that are:
 - 1. Over-represented
 - 2. Minimum deviation
 - 3. Minimum frequency
- 5) Those structure are the motifs of the network.

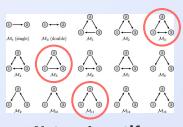
Input network



Subgraph counts

Null model

Computational expensive



Network motifs

Temporal network • motifs

Many times networks are not enough to represent real world scenarios.

Interactions change over time... Images could be videos... Traffic on roads change...

So temporal networks solve this problem.

Many times networks are not enough to represent real world scenarios.

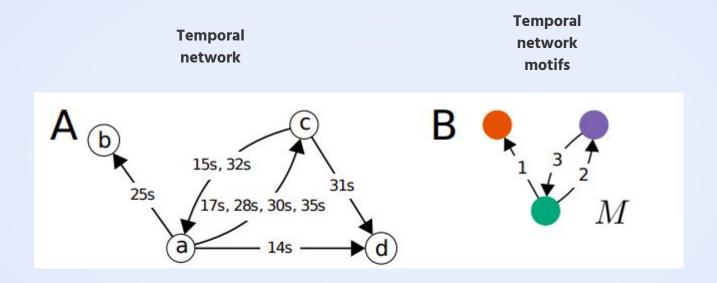
Interactions change over time... Images could be videos... Traffic on roads change...

So temporal networks solve this problem.

Temporal network:

- 1) **Edges** → interactions among peoples
- **Nodes** → users in social networks
- **Attributes** → enemies can become friends

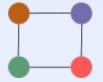
Obviously, even temporal network has motifs.



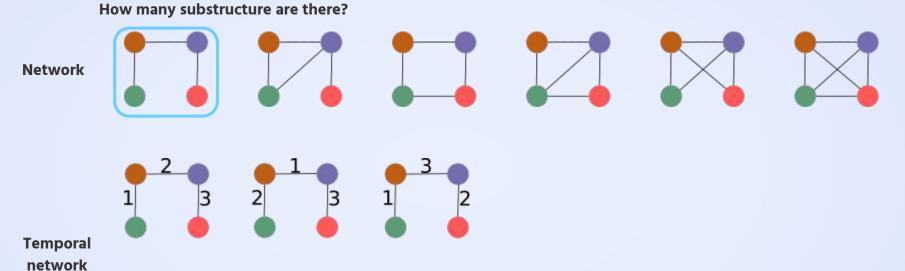
Obviously, even temporal network has motifs.

How many substructure are there?

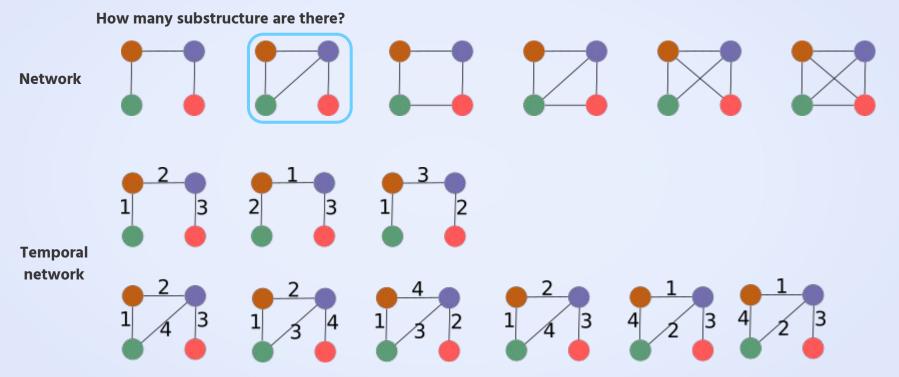
Network



Obviously, even temporal network has motifs.



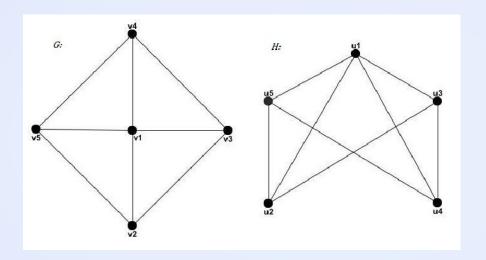
Obviously, even temporal network has motifs.



A lot of more

The **time** required to **count** motifs in **temporal network** is **higher** due to the **complexity** introduced by the **temporal** dimension.

The **time** required to **count** motifs in **temporal network** is **higher** due to the **complexity** introduced by the **temporal** dimension.

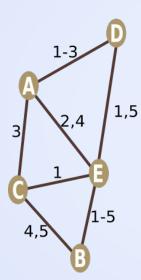


If the size of the sub graph is big, we have to compute an **isomorphism test**. It requires lot of time!

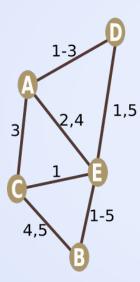
Egocentric Temporal Motifs

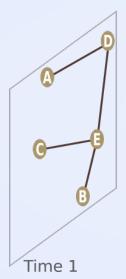
EGOCENTRIC TEMPORAL MOTIFS

Temporal graph

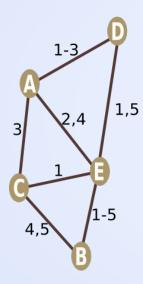


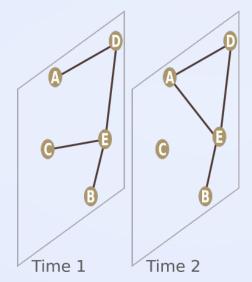
Temporal graph



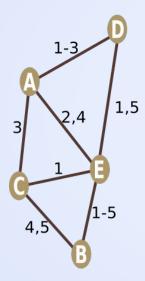


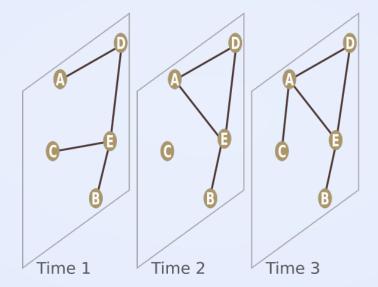
Temporal graph

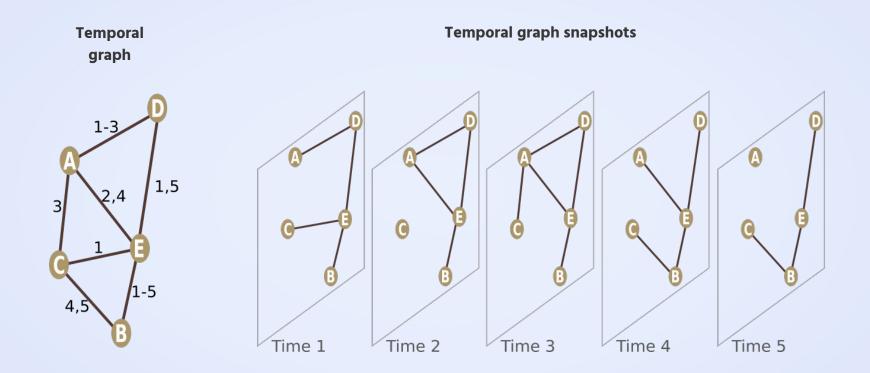




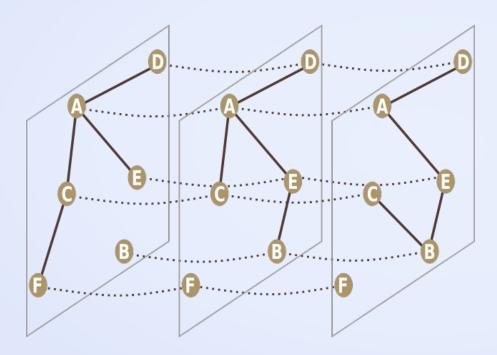
Temporal graph



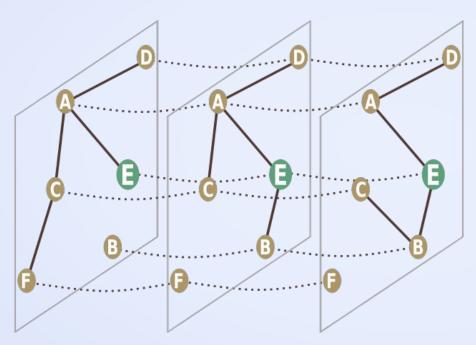




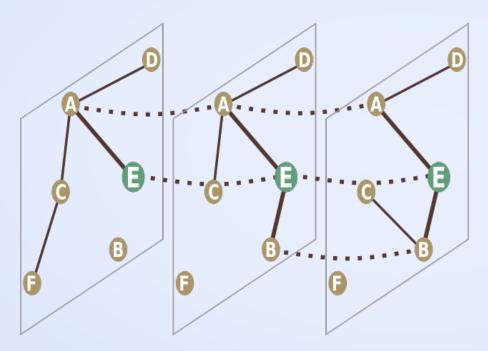
K = 2



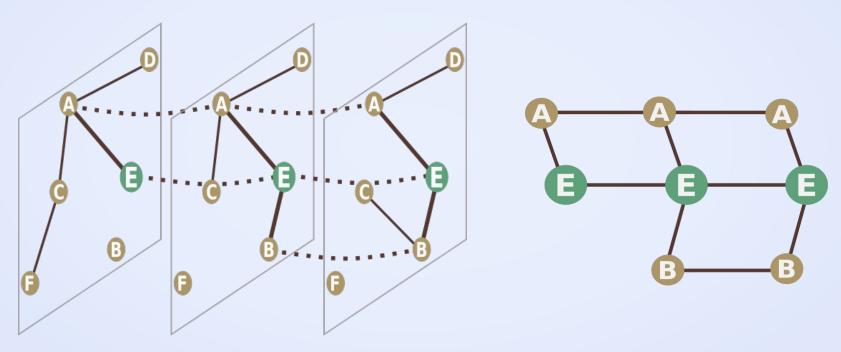
K = 2 Decide and EGO Node = E



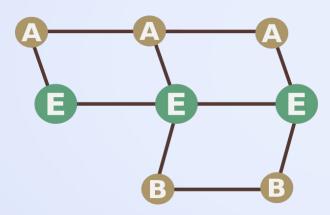
K = 2 Decide and EGO Node = E



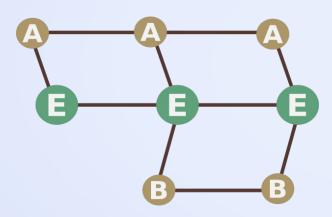
K = 2 Decide and EGO Node = E



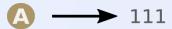
K = 2 Decide and EGO Node = E

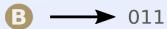


K = 2 Decide and EGO Node = E

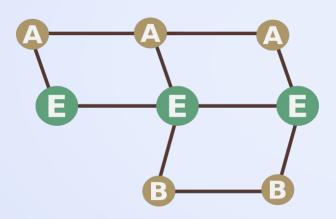


NODE ENCODING

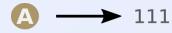




K = 2 Decide and EGO Node = E



NODE ENCODING

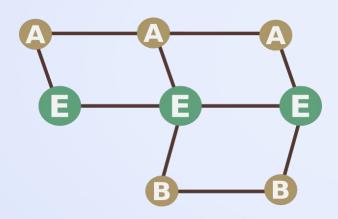


B → 011

SORTED NODE ENCODING

B A)11 111

K = 2 Decide and EGO Node = E



NODE ENCODING

<u>A</u> → 111

B → 011

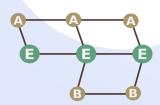
SORTED NODE ENCODING

B A 011 111

Egocentric Temporal Neighbourhood Signature ETNS

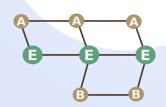
ETN

Egocentric Temporal Neighbourhood. (a sub structure)



ETN

Egocentric Temporal Neighbourhood. (a sub structure)



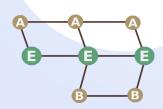
ETNS

Egocentric Temporal Neighbourhood Signature. (a string representing a sub structure)

Fast way to compute if two sub structures are identical

ETN

Egocentric Temporal Neighbourhood. (a sub structure)



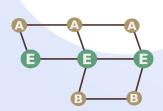
ETNS

Egocentric Temporal Neighbourhood Signature. (a string representing a sub structure)

Fast way to compute if two sub structures are identical

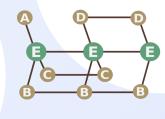
ETN

Egocentric Temporal Neighbourhood. (a sub structure)



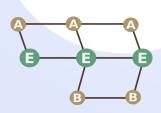
ETNS

Egocentric Temporal Neighbourhood Signature. (a string representing a sub structure)



ETN

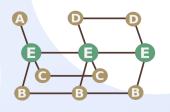
Egocentric Temporal Neighbourhood. (a sub structure)

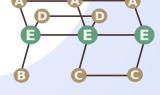


ETNS

Egocentric Temporal Neighbourhood Signature. (a string representing a sub structure)

Fast way to compute if two sub structures are identical





011 100 110 111

011 100 110 111

Egocentric temporal motifs

Procedure

- 1) Count all possible **egocentric** substructure of a given network.
- 2) Generate networks similar to the input one.
- 3) Count all possible ego substructure in the generated networks
- 4) Check for those **egocentric** substructure that are:
 - 1. Over-represented
 - 2. Minimum deviation
 - 3. Minimum frequency
- 5) Those egocentric structure are the EGOCENTRIC TEMPORAL MOTIFS

Now it is fast

Cool! How can we use those structures?

COMPUTE DISTANCES

COMPUTE DISTANCES

$$dist_{M}(\mathcal{G}_{1},\mathcal{G}_{2}) = 1 - \frac{EMB_{M}(\mathcal{G}_{1}) \cdot EMB_{M}(\mathcal{G}_{2})}{||EMB_{M}(\mathcal{G}_{1})|| ||EMB_{M}(\mathcal{G}_{2})||}$$

COMPUTE DISTANCES

$$dist_{M}(\mathcal{G}_{1},\mathcal{G}_{2}) = 1 - \frac{EMB_{M}(\mathcal{G}_{1}) \cdot EMB_{M}(\mathcal{G}_{2})}{||EMB_{M}(\mathcal{G}_{1})|| ||EMB_{M}(\mathcal{G}_{2})||}$$

Input graphs

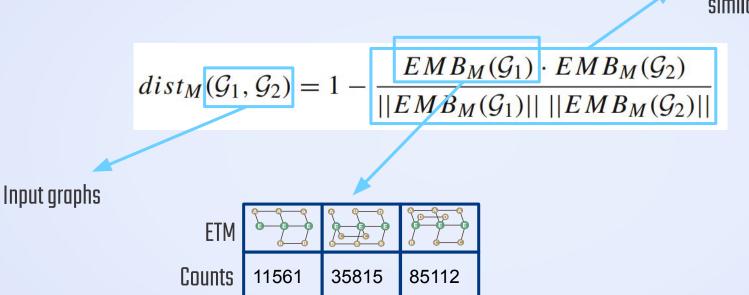
COMPUTE DISTANCES

Cosine similarity

$$dist_{M}(\mathcal{G}_{1},\mathcal{G}_{2}) = 1 - \frac{EMB_{M}(\mathcal{G}_{1}) \cdot EMB_{M}(\mathcal{G}_{2})}{||EMB_{M}(\mathcal{G}_{1})|| ||EMB_{M}(\mathcal{G}_{2})||}$$

Input graphs

Cosine similarity



RESULTS

Sociopatter data, face to face interactions

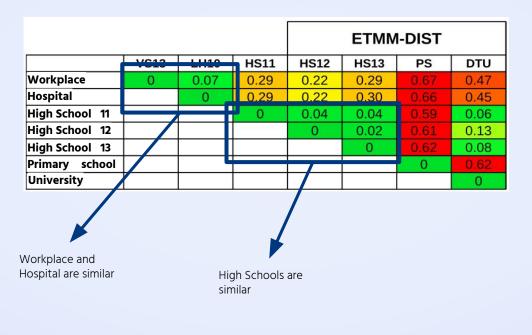
Workplace
Hospital
High School 11
High School 12
High School 13
Primary school
University

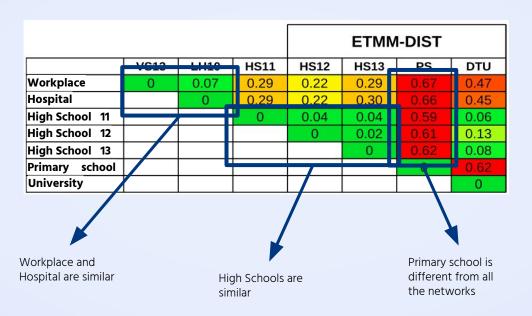
				ETMM-DIST					
	VS13	LH10	HS11	HS12	HS13	PS	DTU		
Workplace	0	0.07	0.29	0.22	0.29	0.67	0.47		
Hospital		0	0.29	0.22	0.30	0.66	0.45		
High School 11			0	0.04	0.04	0.59	0.06		
High School 12				0	0.02	0.61	0.13		
High School 13					0	0.62	0.08		
Primary school						0	0.62		
University						_	0		

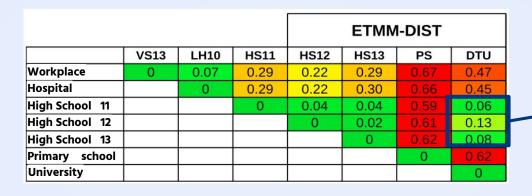
RESULTS

				ETMM-DIST			
	VC13	LH110	HS11	HS12	HS13	PS	DTU
Workplace	0	0.07	0.29	0.22	0.29	0.67	0.47
Hospital		0	0.29	0.22	0.30	0.66	0.45
High School 11			0	0.04	0.04	0.59	0.06
High School 12				0	0.02	0.61	0.13
High School 13					0	0.62	0.08
Primary school						0	0.62
University						_	0

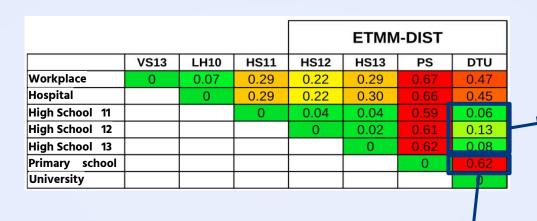
Workplace and Hospital are similar







RESULTS

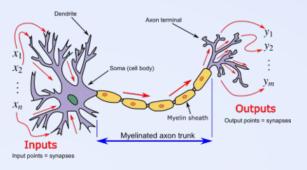


Different from primary school Quite similar to

High Schools

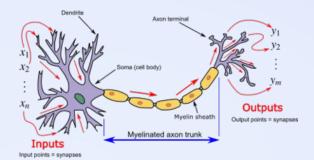
Future directions

COMPUTE DISTANCES **BIOLOGICAL NEURONS**



COMPUTE DISTANCES

BIOLOGICAL NEURONS



OPEN Data Descriptor: Dataset of human medial temporal lobe single neuron activity during declarative memory encoding and recognition

Received: 12 September 2017 Accepted: 8 December 2017 Published: 13 February 2018

Mailys C. M. Faraut¹, April A. Carlson¹, Shannon Sullivan¹, Oana Tudusciuc², Ian Ross³, Chrystal M. Reed⁴, Jeffrey M. Chung⁴, Adam N. Mamelak¹ & Ueli Rutishauser^{1,2,4,5,6}

- Neurons activation in human amygdala and hippocampus.
- Recognition memory task with pictures

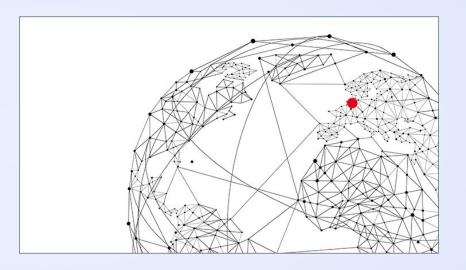
COMPUTE DISTANCES
BIOLOGICAL NEURONS
PROTEOME (protein interactions)

COMPUTE DISTANCES
BIOLOGICAL NEURONS
PROTEOME (protein interactions)

INTERACTOME (molecular interactions)

COMPUTE DISTANCES
BIOLOGICAL NEURONS
PROTEOME (protein interactions)
INTERACTOME (molecular interactions)

EPIDEMICS



COMPUTE DISTANCES
BIOLOGICAL NEURONS
PROTEOME (protein interactions)
INTERACTOME (molecular interactions)
EPIDEMICS

AGING

COMPUTE DISTANCES

BIOLOGICAL NEURONS

PROTEOME (protein interactions)

INTERACTOME (molecular interactions)

EPIDEMICS

AGING

METABOLIC NETWORK

COMPUTE DISTANCES

BIOLOGICAL NEURONS

PROTEOME (protein interactions)

INTERACTOME (molecular interactions)

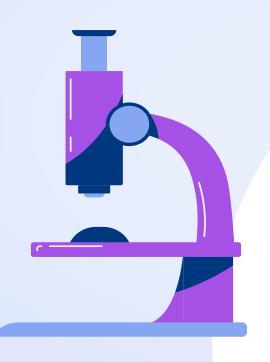
EPIDEMICS

AGING

METABOLIC NETWORK

.....

IN BRIEF



- We show the importance of Temporal networks
- Motifs in temporal networks
- Egocentric temporal motifs
- Fast way to mine it
- Possible applications

THANKS

Do you have any questions?

alonga@fbk.eu https://antoniolonga.github.io/

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

