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NETWORK

How can we study networks?
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How can we study networks?

Topology

Many properties:

Degree, clustering,
assortativity, connectivity,

I]ynumn: simulotions
Simulate an epidemic in a
network. (RO, infected
individuals, ...)
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NETWORK MOTIFS [1]

are subgraphs, that appear in an observed network significantly more often
than in compatible randomized networks.

[1] Milo, Ron, et al. "Network motifs: simple building blocks of complex networks." Science 298.5594 (2002): 824-827.
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NETWORK MOTIFS [1]

are subgraphs, that appear in an observed network significantly more often

than in compatible randomized networks.

Procedure

1) Count all possible substructure of a given network.

Input network

[1] Milo, Ron, et al. "Network motifs: simple building blocks of complex networks." Science 298.5594 (2002): 824-827.
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NETWORK MOTIFS [1]

are subgraphs, that appear in an observed network significantly more often
than in compatible randomized networks.

Procedure
1) Count all possible substructure of a given network.
2)  Generate networks similar to the input one.
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[1] Milo, Ron, et al. "Network motifs: simple building blocks of complex networks." Science 298.5594 (2002): 824-827.



NETWORK MOTIFS [1]

are subgraphs, that appear in an observed network significantly more often

than in compatible randomized networks.

Procedure

1) Count all possible substructure of a given network.

2)  Generate networks similar to the input one.

3) Count all possible substructure in the generated networks
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NETWORK MOTIFS [1]

are subgraphs, that appear in an observed network significantly more often

than in compatible randomized networks.

Procedure
1) Count all possible substructure of a given network.

2)  Generate networks similar to the input one.

Check for those substructure that are:
1. Over-represented
2. Minimum deviation
3. Minimum frequency
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NETWORK MOTIFS [1]

are subgraphs, that appear in an observed network significantly more often

than in compatible randomized networks.

Procedure
1) Count all possible substructure of a given network.

Generate networks similar to the input one.

w N

Check for those substructure that are:
1. Over-represented
2. Minimum deviation
3. Minimum frequency
5) Those structure are the motifs of the network.
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[1] Milo, Ron, et al. "Network motifs: simple building blocks of complex networks." Science 298.5594 (2002): 824-827.
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NETWORK MOTIFS [1]

are subgraphs, that appear in an observed network significantly more often

than in compatible randomized networks.

Procedure

1) Count all possible substructure of a given network.

2)  Generate networks similar to the input one.

3) Count all possible substructure in the generated networks

4)  Check for those substructure that are:
1. Over-represented
2. Minimum deviation
3. Minimum frequency

5) Those structure are the motifs of the network.
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NETWORK MOTIFS

are subgraphs, that appear in an observed network significantly more often
than in compatible randomized networks.

Procedure
1) Count all possible substructure of a given network.

2)  Generate networks similar to the input one.
3) Count all possible substructure in the generated networks

How many substructure are there?
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NETWORK MOTIFS

are subgraphs, that appear in an observed network significantly more often
than in compatible randomized networks.

Procedure
1) Count all possible substructure of a given network.

2)  Generate networks similar to the input one.
3) Count all possible substructure in the generated networks

How many substructure are there?

3 nodes
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NETWORK MOTIFS

are subgraphs, that appear in an observed network significantly more often
than in compatible randomized networks.

Procedure
1) Count all possible substructure of a given network.

2)  Generate networks similar to the input one.
3) Count all possible substructure in the generated networks

How many substructure are there?

3 nodes 4 nodes
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NETWORK MOTIFS

are subgraphs, that appear in an observed network significantly more often
than in compatible randomized networks.

Procedure
1) Count all possible substructure of a given network.

2)  Generate networks similar to the input one.
3) Count all possible substructure in the generated networks

How many substructure are there?

3 nodes 4 nodes

P NUINURK

5 nodes

21 structures
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NETWORK MOTIFS

are subgraphs, that appear in an observed network significantly more often
than in compatible randomized networks.

Procedure
1) Count all possible substructure of a given network.

2)  Generate networks similar to the input one.
3) Count all possible substructure in the generated networks

How many substructure are there?

3 nodes 4 nodes

P NUINURK

5 nodes 10 nodes

21 structures *kkk kK
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NETWORK MOTIFS

are subgraphs, that appear in an observed network significantly more often
than in compatible randomized networks.

ecdure Computational
1) Count all possible subs’;ructure of.a given network. expensive
2) Generate networks similar to the input one.
3) Count all possible substructure in the generated networks
4)  Check for those substructure that are:
1. Over-represented
2. Minimum deviation
3. Minimum frequency
5) Those structure are the motifs of the network.
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TEMPORAL NETWORK MOTIFS

Many times networks are not enough to represent real world scenarios.

Interactions change over time...
Images could be videos...
Traffic on roads change...

So temporal networks solve this problem.
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TEMPORAL NETWORK MOTIFS

Many times networks are not enough to represent real world scenarios.

Interactions change over time...
Images could be videos...
Traffic on roads change...

So temporal networks solve this problem.

Temporal network:

1) Edges — interactions among peoples
2) Nodes — users in social networks
3) Attributes — enemies can become friends
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TEMPORAL NETWORK MOTIFS

Obviously, even temporal network has motifs.

Temporal
Temporal network
network i

g LR PR
&

x £17s 28s, 30s, 35s :

Paranjape, Ashwin, Austin R. Benson, and Jure Leskovec. "Motifs in temporal networks." Proceedings of the tenth ACM international conference on web search and data mining. 2017.
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TEMPORAL NETWORK MOTIFS

Obviously, even temporal network has motifs.

How many substructure are there?
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TEMPORAL NETWORK MOTIFS

Obviously, even temporal network has motifs.

How many substructure are there?

- R

Temporal
network
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TEMPORAL NETWORK MOTIFS

Obviously, even temporal network has motifs.

How many substructure are there?
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A lot of more

Temporal
network
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TEMPORAL NETWORK MOTIFS

The time required to count motifs in temporal network is higher due to the
complexity introduced by the temporal dimension.
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TEMPORAL NETWORK MOTIFS

The time required to count motifs in temporal network is higher due to the
complexity introduced by the temporal dimension.

If the size of the sub graph is big, we have to compute an isomorphism test.
It requires lot of time!
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EGOCENTRIC TEMPORAL MOTIFS

Temporal
graph

A. Longa, G. Cencetti, B. Lepri, and A. Passerini, “An efficient procedure for mining egocentric temporal motifs,” Data Mining and Knowledge Discovery, pp. 1-24, 2021.
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EGOCENTRIC TEMPORAL MOTIFS

Temporal
graph

Time 1

A. Longa, G. Cencetti, B. Lepri, and A. Passerini, “An efficient procedure for mining egocentric temporal motifs,” Data Mining and Knowledge Discovery, pp. 1-24, 2021.
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EGOCENTRIC TEMPORAL MOTIFS

Temporal
graph

Time 1 Time 2

A. Longa, G. Cencetti, B. Lepri, and A. Passerini, “An efficient procedure for mining egocentric temporal motifs,” Data Mining and Knowledge Discovery, pp. 1-24, 2021.
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EGOCENTRIC TEMPORAL MOTIFS

Temporal
graph

Time 1 “Time 2

A. Longa, G. Cencetti, B. Lepri, and A. Passerini, “An efficient procedure for mining egocentric temporal motifs,” Data Mining and Knowledge Discovery, pp. 1-24, 2021.
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EGOCENTRIC TEMPORAL MOTIFS

Temporal Temporal graph snapshots
graph

“Time 1 “Time 2 “Time 3 Time 4 “Time 5

A. Longa, G. Cencetti, B. Lepri, and A. Passerini, “An efficient procedure for mining egocentric temporal motifs,” Data Mining and Knowledge Discovery, pp. 1-24, 2021.
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EGOCENTRIC TEMPORAL MOTIFS

K=2

A. Longa, G. Cencetti, B. Lepri, and A. Passerini, “An efficient procedure for mining egocentric temporal motifs,” Data Mining and Knowledge Discovery, pp. 1-24, 2021.
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EGOCENTRIC TEMPORAL MOTIFS

K=2
Decide and EGO Node = E

A. Longa, G. Cencetti, B. Lepri, and A. Passerini, “An efficient procedure for mining egocentric temporal motifs,” Data Mining and Knowledge Discovery, pp. 1-24, 2021.
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EGOCENTRIC TEMPORAL MOTIFS

K=2
Decide and EGO Node = E

A. Longa, G. Cencetti, B. Lepri, and A. Passerini, “An efficient procedure for mining egocentric temporal motifs,” Data Mining and Knowledge Discovery, pp. 1-24, 2021.
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EGOCENTRIC TEMPORAL MOTIFS

K=2
Decide and EGO Node = E

A. Longa, G. Cencetti, B. Lepri, and A. Passerini, “An efficient procedure for mining egocentric temporal motifs,” Data Mining and Knowledge Discovery, pp. 1-24, 2021.
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EGOCENTRIC TEMPORAL MOTIFS

K=2
Decide and EGO Node = E

A. Longa, G. Cencetti, B. Lepri, and A. Passerini, “An efficient procedure for mining egocentric temporal motifs,” Data Mining and Knowledge Discovery, pp. 1-24, 2021.
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EGOCENTRIC TEMPORAL MOTIFS

K=2
Decide and EGO Node = E

NODE ENCODING

O — 111
©® — o121

A. Longa, G. Cencetti, B. Lepri, and A. Passerini, “An efficient procedure for mining egocentric temporal motifs,” Data Mining and Knowledge Discovery, pp. 1-24, 2021.
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EGOCENTRIC TEMPORAL MOTIFS

K=2
Decide and EGO Node = E

SORTED
NODE ENCODING NODE ENCODING

O — 111 o 0
G — o011 011 111

A. Longa, G. Cencetti, B. Lepri, and A. Passerini, “An efficient procedure for mining egocentric temporal motifs,” Data Mining and Knowledge Discovery, pp. 1-24, 2021.
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EGOCENTRIC TEMPORAL MOTIFS

K=2
Decide and EGO Node = E

SORTED
NODE ENCODING NODE ENCODING

O — 111 o 0
G — o011 011 111

Egocentric Temporal Neighbourhood Signature
ETNS

011 1M

A. Longa, G. Cencetti, B. Lepri, and A. Passerini, “An efficient procedure for mining egocentric temporal motifs,” Data Mining and Knowledge Discovery, pp. 1-24, 2021. 48



ETN

Egocentric
Temporal
Neighbourhood.
(a sub structure)

IN SHORT
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ETN

Egocentric
Temporal
Neighbourhood.
(a sub structure)

IN SHORT

ETNS

Egocentric Temporal
Neighbourhood Signature.
(a string representing a sub

structure)

01 1M
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ETN

Egocentric
Temporal
Neighbourhood.
(a sub structure)

IN SHORT

ETNS

Egocentric Temporal
Neighbourhood Signature.
(a string representing a sub

structure)

01 1M

Fast way to compute if two
sub structures are identical
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ETN

Egocentric
Temporal
Neighbourhood.
(a sub structure)

INSHORT

ETNS

Egocentric Temporal
Neighbourhood Signature.
(a string representing a sub

structure)

01 1M

Fast way to compute if two
sub structures are identical
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ETN

Egocentric
Temporal
Neighbourhood.
(a sub structure)

INSHORT

Fast way to compute if two
sub structures are identical

ETNS

Egocentric Temporal
Neighbourhood Signature.
(a string representing a sub

structure)

011100 110 M 011100 110 M

01 1M
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Egocentric temporal motifs

Procedure
7 Count all possible egocentric substructure of a given network.
2) Generate networks similar to the input one.
3) Count all possible ego substructure in the generated networks
4)  Check for those egocentric substructure that are:
1. Over-represented
2. Minimum deviation

3. Minimum frequency
5) Those egocentric structure are the EGOCENTRIC TEMPORAL MOTIFS

Now it is fast
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COMPUTE DISTANCES

APPLICATIONS
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COMPUTE DISTANCES

disty(G1,G2) =1

APPLICATIONS

EMB(Gy) - EM By (G)

 ||EMBy (G| ||EM By (Ga)l|
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COMPUTE DISTANCES

disty(G1,G2) =1

Input graphs

APPLICATIONS

EMB(Gy) - EM By (G)

 ||EMBy (G| ||EM By (Ga)l|
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COMPUTE DISTANCES

disty(G1,G2) =1

Input graphs

APPLICATIONS

EMB(Gy) - EM By (G)

Cosine
similarity

|IEM By (G| ||EM By (Ga)l|

59



APPLICATIONS
Cosine

COMPUTE DISTANCES STl

EMBpy(G1) - EM By (G2)
|EMBy (G| [|EMBp(G2)]|

disty(G1,G2)|=1—

Input graphs

kel =31 aw;

Counts | 11561 | 35815 | 85112
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COMPUTE DISTANCES
RESULTS

Sociopatter data, face to face interactions

Workplace
Hospital

High School 11
High School 12
High School 13
Primary school
University
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COMPUTE DISTANCES

RESULTS

ETMM-DIST

Workplace

Hospital

High School 11

High School 12

High School 13

Primary school

University
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COMPUTE DISTANCES

RESULTS

ETMM-DIST

Workplace
Hospital

High School 11

High School 12

High School 13

Primary school

University

Workplace and
Hospital are similar

DTU
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COMPUTE DISTANCES
RESULTS

ETMM-DIST

DTU

Workplace
Hospital

High School 11
High School 12
High School 13
Primary school
University

Workplace and

Hospital are similar High Schools are

similar
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COMPUTE DISTANCES
RESULTS

ETMM-DIST

[ DTU

Workplace
Hospital

High School 11
High School 12
High School 13
Primary school
University /'

Workplace and Primary school is
Hospital are similar High Schools are different from all
similar the networks
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COMPUTE DISTANCES

RESULTS

ETMM-DIST

Workplace

Hospital

High School 11

High School 12

High School 13

Primary school

University

Quite similar to
High Schools
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COMPUTE DISTANCES

RESULTS

ETMM-DIST

Workplace

Hospital

High School 11

High School 12

High School 13

Primary school

University

Different from
primary school

Quite similar to
High Schools
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COMPUTE DISTANCES
BIOLOGICAL NEURONS

APPLICATIONS

Inputs <

Input points = synapses
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COMPUTE DISTANCES
BIOLOGICAL NEURONS

APPLICATIONS

Outputs

Myelin sheath Output points = synapses

Myelinated axon trunk

Inputs -
Input points = synapses

SCIENTIFIC D AT Al -

OPEN: Data Descriptor: Dataset of human
- medial temporal lobe single neuron
- activity during declarative memory
- encoding and recognition

Received : 12 September 2017 * . ; i N o e N
Accepted: 8 December 2017 Mailys C. M. Faraut’, April A. Carlson”, Shannon Sullivan”, Oana Tudusciuc”, lan Ross”,

% : Chrystal M. Reed", Jeffrey M. Chung®, Adam N. Mamelak® & Ueli Rutishauser"**¢
Published: 13 February 2018

Neurons activation in human
amygdala and hippocampus.
Recognition memory task with
pictures
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APPLICATIONS

COMPUTE DISTANCES
BIOLOGICAL NEURONS
PROTEOME (protein interactions)
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APPLICATIONS

COMPUTE DISTANCES

BIOLOGICAL NEURONS

PROTEOME (protein interactions)

INTERACTOME (molecular interactions)

72
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BIOLOGICAL NEURONS

PROTEOME (protein interactions)
INTERACTOME (molecular interactions)
EPIDEMICS

APPLICATIONS

/3



COMPUTE DISTANCES

BIOLOGICAL NEURONS

PROTEOME (protein interactions)
INTERACTOME (molecular interactions)
EPIDEMICS

AGING

APPLICATIONS
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COMPUTE DISTANCES

BIOLOGICAL NEURONS

PROTEOME (protein interactions)
INTERACTOME (molecular interactions)
EPIDEMICS

AGING

METABOLIC NETWORK

APPLICATIONS
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COMPUTE DISTANCES

BIOLOGICAL NEURONS

PROTEOME (protein interactions)
INTERACTOME (molecular interactions)
EPIDEMICS

AGING

METABOLIC NETWORK

APPLICATIONS
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INBRIEF

We show the importance of
Temporal networks

Motifs in temporal networks
Egocentric temporal motifs
Fast way to mine it

Possible applications
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THANKS

Do you have any questions?

alonga@fbk.eu
https://antoniolonga.github.io/

CREDITS: This presentation template was
created by Slidesgo, including icons by
Flaticon, and infographics & images by
Freepik



http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

