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Symbolic: Subsymbolic:
@ 50s - 80s @ 80s - up to now
@ based on high-level symbols @ implicit representation
@ Examples: @ Examples:
- Logic programming - Bayesian learning
- Semantic nets - Neural Network
- Production rules - Deep learning
@ Pros: @ Pros:
- reasoning + derivation of new - learning from data, robust to
knowledge, interpretable, ... noise, scalable, ...
o Cons: o Cons:
- expert knowledge, no robust - Black box, data hungry, no
to noise, scalability issues, ... reasoning capability, ...
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Neuro-Symbolic

@ Integration of symbolic and subsymbolic:

- Less training data

Low level processing with high level reasoning

- Constraint predictions

Interpretable

@ Examples:

- Fuzzy logic: Logic Tensor Network and LYRICS

- Probabilistic graphical models: Deep Structured Models and Deep
Logical Models

- LP + Probabilistic reasoning: NeurASP and DeepProbLog
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#facts
headl. head2.

#rule
twoHeads: -
headl,
head2.

#query
query (twoHeads) .
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Prolog - ProblLog - DeepProblLog

Logic Programming:

- Facts:
unconditionally true

statements on both object

and their relations

- Rules:
relations among objects

- Queries:

interaction with the logic

program
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ProbLog

#probabilistic facts
0.5::headl. 0.6::head2.

#rule
twoHeads: -
headl,
head2.

#query
query (twoHeads) .

0.3
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Prolog - ProblLog - DeepProblLog

Logic Programming:

- Facts: DeepProblLog
unconditionally true
statements on both object
and their relations

#neural predicate

nn(coin_nn, [X], Y, [h,t]): coin(X, Y)

- RUIeS #rule

twoHeads (X1, X2):-
coin(x1l, h),
coin (X2, h).

- Querles. #query 7N
query (twoHeads (& , © )

relations among objects

interaction with the logic
program

0.6
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Introduction & Motivation

o Events:

@ Neural approaches:
- Not/Limit support for background knowledge

- Large amount of annotated training data

@ Neuro-symbolic approaches:
- Support for background knowledge

- Less amount of annotated training data — "shallow” annotations
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Contribution

1 A formal definition of Structured event (Se) recognition using
"shallow” annotations

2 A neuro-symbolic prototype using DeepProblLog
3 A framework to generate fully annotated videos

4 Experiment: Neural vs DeepProblLog approach
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Problem definition

o A first order language L:
- three sorts: O (objects), E (events), T (time-points)
- constants 0,1,2,... of sort T
- < TxT—{T,1}

- Pofsort Ok — {1, T}, € of sort OF — E

outcome(E, Q), happens(E, T, T)
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Problem definition

o A first order language L:
- three sorts: O (objects), E (events), T (time-points)
- constants 0,1,2,... of sort T
- < TxT—{T,1}
- Pofsort Ok — {1, T}, € of sort OF — E
- outcome(E, Q), happens(E, T, T)
@ Example of formulas:
- Jx.happens(leave(John, x), t1, t2)

- milk(x) A coffee(y) — outcome(mix(x,y), z) A cappuccino(z)
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Problem definition

@ Our aim:

From a data sequence D = {d;}X_, generate an interpretation (i.e., a
description) of what happens in D

@ Example:

D = {d;}!_, — person moves, leaves a bag and moves again:

-C= {ph bl}
person(p1), bag(b1), }

- F= happens(move(p1), 0, 4), happens(leave(p, b1),4,5)
happens(move(p1),5,7),
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Problem definition

@ Our aim:

From a data sequence D = {d;}X_, generate an interpretation (i.e., a
description) of what happens in D

@ Example:

D = {d;}!_, — person moves, leaves a bag and moves again:

-C= {ph bl}
person(p1), bag(b1),
- F =4 happens(move(p1),0,4), happens(leave(pi, b1),4,5)
happens(move(p1),5,7),

o Partial supervision:

— subset of events that happened (or do not) in D
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Problem definition

e Example(cont.):

happens(potential_threat, to, t3) <>
3x,y, t1, ta. person(x) A bag(y) A
happens(move(x), to, t1) A
happens(leave(x,y), t1, ) A
happens(move(x), ta, t3)
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Problem definition

e Example(cont.):

happens(potential_threat, to, t3) <>
3x,y, t1, ta. person(x) A bag(y) A
happens(move(x), to, t1) A
happens(leave(x,y), t1, ) A
happens(move(x), ta, t3)

o Partial Supervision:
- DM DA . D™: mvideos of length k

- D
— happens(potential_threat, 0, k)
— —happens(potential_threat, 0, k)
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Proposed solution

@ Three tasks has to be solved:
1 Object detection
2 Object classification and relation detection

3 Event recognition
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Proposed solution

@ Three tasks has to be solved:
1 Object detection
2 Object classification and relation detection
3 Event recognition
@ Use neural networks:
- A ntw for detecting the objects (Det,,)
- A ntw for predicate evaluation (Ppp)
@ Combines ntws outputs with background knowledge:

— DeepProblLog prototype
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Event Generation Framework

o Different level of annotations

@ Manually curated and not extensible

@ Mnist digits video generator:

- video with different length and different number of objects

simple events (appear, disapper, enter and exit)

structured events (join_add, join_sub and split)

- narrative (name, class, position, simple events and structured events)
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Event Generation Framework

Join_add Join_sub Split
2 G
7 4 2
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Experimental setting

@ Research question:

Has a neuro-symbolic solution an advantage in recognizing Se with
respect to a fully neural approach?
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Experimental setting

@ Research question:

Has a neuro-symbolic solution an advantage in recognizing Se with
respect to a fully neural approach?

o Evaluation:
- correct classification of the video
- correct classification of the objects (i.e. digits)

- generalization to unseen outcomes (i.e. no explicit supervision)
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Experimental setting

Scenario:

- videos of 10 frames

- digits appear anytime within the first half of the video, and only
disappear if they join together

- three events:

Join_add Join_sub No_join
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Experimental setting

Learning;:
{happens(join_add(x,y), 1, T), outcome(join_add(x, y), z), digit(z,4)}
{happens(join_sub(x, y),1, T), outcome(join_sub(x, y), z), digit(z, 2)}

{—happens(join_add(x, y), 1, T), ~happens(join_sub(x,y),1, T)}
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Experimental setting

Learning;:
{happens(join_add(x,y), 1, T), outcome(join_add(x, y), z), digit(z,4)}
{happens(join_sub(x, y),1, T), outcome(join_sub(x, y), z), digit(z, 2)}
{—happens(join_add(x, y), 1, T), ~happens(join_sub(x,y),1, T)}
- train & validation (1800 and 150 videos):
— join_add — outcome from 2 to 7
— join_sub — outcome from 0 to 7
— no_join
- test (180 videos):
— join_add — outcome from 2 to 9
— join_sub — outcome from 0 to 8
— no_join
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Event recognition approaches
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Object detector and classifier
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Object detector and classifier
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Object detector and classifier
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Object detector and classifier
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Object detector and classifier
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Object detector and classifier

"Soft" patches
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Neuro symbolic approach

nn(mnist_net, [I, V, T1, Y, [0,1,2,3,4,5,6,7,8,9,-11) :: digit(I, V, T, Y).

join_add_res(V, Z) :- join_sub_res(V, Z) :-

between(0, 4, T1), between(0, 4, T1),
digit(0, V, T1, X), digit(0, V, T1, X),
X>0, X<9, X >0,

digit(1, v, T1, Y), digit(1, v, T1, Y),
Y>o0,Y<10- X, Y > o,

digit(0, V, 9, 2), digit(0, V, 9, 2),
Zis X +Y, Z>1, Z is abs(X-Y),
digit(1, Vv, 9, -1). digit(1, Vv, 9, -1).

no_join(V) :- digit(1, V, 9, X), X =\= -1.
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Results - Structured event recognition

Neural approach DeepProblLog
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Results - Digit classification

Neural approach DeepProbLog

Confusion Matrix Confusion Matrix
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Conclusion

Summary:
- neuro-symbolic approach based on DeepProblLog for Se recognition
- end-to-end training using shallow annotations
- comparison with pure neural approach:
1) train without direct supervision on some classes

2) explainability
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Thank you!
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