A Neuro-Symbolic Approach to Structured Event Recognition

Gianluca Apriceno ¹², Andrea Passerini², Luciano Serafini¹

¹Fondazione Bruno Kessler, Trento, Italy ²University of Trento, Trento, Italy

28th International Symposium on Temporal Representation and Reasoning

April 8, 2022

Gianluca Apriceno

SML Journal Club 1/19

Table of contents

Background

2 An application of a NS in the context of (structured) event recognition

(ロト 4년) + 4분 + 4분 + 1분 - 1900은

Gianluca Apriceno

Al war

Symbolic: Subsymbolic:

• Pros:

• Cons:

Pros:

Symbolic:

- 50s 80s
- based on high-level symbols
- Examples:
 - Logic programming
 - Semantic nets
 - Production rules
- Pros:

Cons:

Subsymbolic:

Pros:

Symbolic:

Subsymbolic:

- 50s 80s
- based on high-level symbols
- Examples:
 - Logic programming
 - Semantic nets
 - Production rules
- Pros:
 - reasoning + derivation of new knowledge, interpretable, . . .
- Cons:

Pros:

Symbolic:

- 50s 80s
- based on high-level symbols
- Examples:
 - Logic programming
 - Semantic nets
 - Production rules
- Pros:
 - reasoning + derivation of new knowledge, interpretable, . . .
- Cons:
 - expert knowledge, no robust to noise, scalability issues, ...

Subsymbolic:

Pros:

Symbolic:

- 50s 80s
- based on high-level symbols
- Examples:
 - Logic programming
 - Semantic nets
 - Production rules

Pros:

 reasoning + derivation of new knowledge, interpretable, . . .

Cons:

- expert knowledge, no robust to noise, scalability issues, ...

Subsymbolic:

- 80s up to now
- implicit representation
- Examples:
 - Bayesian learning
 - Neural Network
 - Deep learning
- Pros:

Symbolic:

- 50s 80s
- based on high-level symbols
- Examples:
 - Logic programming
 - Semantic nets
 - Production rules

Pros:

 reasoning + derivation of new knowledge, interpretable, . . .

Cons:

 expert knowledge, no robust to noise, scalability issues, ...

Subsymbolic:

- 80s up to now
- implicit representation
- Examples:
 - Bayesian learning
 - Neural Network
 - Deep learning
- Pros:
 - learning from data, robust to noise, scalable, ...
- Cons:

Gianluca Apriceno

4/19

Symbolic:

- 50s 80s
- based on high-level symbols
- Examples:
 - Logic programming
 - Semantic nets
 - Production rules

Pros:

 reasoning + derivation of new knowledge, interpretable, . . .

Cons:

- expert knowledge, no robust to noise, scalability issues, ...

Subsymbolic:

- 80s up to now
- implicit representation
- Examples:
 - Bayesian learning
 - Neural Network
 - Deep learning

Pros:

 learning from data, robust to noise, scalable, ...

Cons:

- Black box, data hungry, no reasoning capability, . . .

Gianluca Apriceno SML Journal Club 4/19

Gianluca Apriceno SML Journal Club 5 / 19

• Integration of symbolic and subsymbolic:

• Examples:

- Integration of symbolic and subsymbolic:
 - Less training data
 - Low level processing with high level reasoning
 - Constraint predictions
 - Interpretable
- Examples:

- Integration of symbolic and subsymbolic:
 - Less training data
 - Low level processing with high level reasoning
 - Constraint predictions
 - Interpretable
- Examples:
 - Fuzzy logic: Logic Tensor Network and LYRICS
 - Probabilistic graphical models: Deep Structured Models and Deep Logical Models
 - LP + Probabilistic reasoning: NeurASP and DeepProbLog

Gianluca Apriceno SML Journal Club 5 / 19

Logic Programming:

- Facts:

unconditionally true statements on both object and their relations

Rules:

relations among objects

- Queries:

interaction with the logic program

Logic Programming:

- Facts:

unconditionally true statements on both object and their relations

Rules:

relations among objects

- Queries:

interaction with the logic program

Prolog

```
#facts
head1. head2.

#rule
twoHeads:-
head1,
head2.

#query
query(twoHeads).
```

Logic Programming:

- Facts:

unconditionally true statements on both object and their relations

Rules:

relations among objects

- Queries:

interaction with the logic program

ProbLog

```
#probabilistic facts
0.5::head1. 0.6::head2.

#rule
twoHeads:-
head1,
head2.

#query
query(twoHeads).
0.3
```

Gianluca Apriceno

Logic Programming:

- Facts:

unconditionally true statements on both object and their relations

- Rules:

relations among objects

- Queries:

interaction with the logic program

DeepProbLog

```
#neural predicate
nn(coin_nn, [X], Y, [h,t]): coin(X, Y)
#rule
twoHeads(X1, X2):-
coin(X1, h),
coin(X2, h).
#query
query(twoHeads())
0.6
```

Gianluca Apriceno

An application of a NS in the context of (structured) event recognition

9/19

Gianluca Apriceno SML Journal Club

Introduction & Motivation

• Events:

Gianluca Apriceno

Introduction & Motivation

• Events:

- Neural approaches:
 - Not/Limit support for background knowledge
 - Large amount of annotated training data

Introduction & Motivation

• Events:

10 / 19

- Neural approaches:
 - Not/Limit support for background knowledge
 - Large amount of annotated training data
- Neuro-symbolic approaches:
 - Support for background knowledge
 - Less amount of annotated training data ightarrow "shallow" annotations

Gianluca Apriceno SML Journal Club

Contribution

- 1 A formal definition of Structured event (Se) recognition using "shallow" annotations
- 2 A neuro-symbolic prototype using DeepProbLog
- 3 A framework to generate fully annotated videos
- 4 Experiment: Neural vs DeepProbLog approach

Gianluca Apriceno

- A first order language \mathcal{L} :
 - three sorts: \mathbb{O} (objects), \mathbb{E} (events), \mathbb{T} (time-points)
 - constants $0, 1, 2, \ldots$ of sort $\mathbb T$
 - $\langle : \mathbb{T} \times \mathbb{T} \to \{\top, \bot\}$
 - \mathcal{P} of sort $\mathbb{O}^k \to \{\bot, \top\}$, \mathcal{E} of sort $\mathbb{O}^k \to \mathbb{E}$
 - $outcome(\mathbb{E},\mathbb{O})$, $happens(\mathbb{E},\mathbb{T},\mathbb{T})$

- A first order language \mathcal{L} :
 - three sorts: \mathbb{O} (objects), \mathbb{E} (events), \mathbb{T} (time-points)
 - constants $0, 1, 2, \ldots$ of sort $\mathbb T$
 - $\langle : \mathbb{T} \times \mathbb{T} \to \{\top, \bot\}$
 - \mathcal{P} of sort $\mathbb{O}^k \to \{\bot, \top\}$, \mathcal{E} of sort $\mathbb{O}^k \to \mathbb{E}$
 - $outcome(\mathbb{E}, \mathbb{O})$, $happens(\mathbb{E}, \mathbb{T}, \mathbb{T})$
- Example of formulas:
 - $\exists x. happens(leave(John, x), t_1, t_2)$
 - $milk(x) \land coffee(y) \rightarrow outcome(mix(x, y), z) \land cappuccino(z)$

Gianluca Apriceno SML Journal Club 11/19

Our aim:

From a data sequence $D = \{d_i\}_{i=1}^k$ generate an interpretation (i.e., a description) of what happens in D

11 / 19

Gianluca Apriceno SML Journal Club

• Our aim:

From a data sequence $D = \{d_i\}_{i=1}^k$ generate an interpretation (i.e., a description) of what happens in D

• Example:

 $D = \{d_i\}_{i=1}^7 \rightarrow \text{ person moves, leaves a bag and moves again:}$

11/19

Gianluca Apriceno SML Journal Club

• Our aim:

From a data sequence $D = \{d_i\}_{i=1}^k$ generate an interpretation (i.e., a description) of what happens in D

• Example:

$$m{D} = \{m{d}_i\}_{i=1}^7
ightarrow$$
 person moves, leaves a bag and moves again:

-
$$C = \{p_1, b_1\}$$

$$- \mathcal{F} = \left\{ \begin{array}{c} \textit{person}(p_1), \textit{bag}(b_1), \\ \textit{happens}(\textit{move}(p_1), 0, 4), \textit{happens}(\textit{leave}(p_1, b_1), 4, 5) \\ \textit{happens}(\textit{move}(p_1), 5, 7), \end{array} \right\}$$

< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q @

Our aim:

From a data sequence $\mathbf{D} = \{\mathbf{d}_i\}_{i=1}^k$ generate an interpretation (i.e., a description) of what happens in **D**

Example:

$$\mathbf{\textit{D}} = \{\mathbf{\textit{d}}_i\}_{i=1}^7
ightarrow$$
 person moves, leaves a bag and moves again:

-
$$C = \{p_1, b_1\}$$

$$- \mathcal{F} = \left\{ \begin{array}{c} \textit{person}(p_1), \textit{bag}(b_1), \\ \textit{happens}(\textit{move}(p_1), 0, 4), \textit{happens}(\textit{leave}(p_1, b_1), 4, 5) \\ \textit{happens}(\textit{move}(p_1), 5, 7), \end{array} \right\}$$

Partial supervision:

Gianluca Apriceno

 \rightarrow subset of events that happened (or do not) in **D**

SML Journal Club

11/19

• Example(cont.):

```
happens(potential\_threat, t_0, t_3) \leftrightarrow \\ \exists x, y, t_1, t_2. \ person(x) \land bag(y) \land \\ happens(move(x), t_0, t_1) \land \\ happens(leave(x, y), t_1, t_2) \land \\ happens(move(x), t_2, t_3)
```

Gianluca Apriceno

• Example(cont.):

```
happens(potential\_threat, t_0, t_3) \leftrightarrow \\ \exists x, y, t_1, t_2. \ person(x) \land bag(y) \land \\ happens(move(x), t_0, t_1) \land \\ happens(leave(x, y), t_1, t_2) \land \\ happens(move(x), t_2, t_3) \end{cases}
```

- Partial Supervision:
 - $\boldsymbol{D}^{(1)}, \boldsymbol{D}^{(2)}, \dots, \boldsymbol{D}^{(m)}$: m videos of length k
 - **D**⁽ⁱ⁾:
 - \rightarrow happens(potential_threat, 0, k)
 - $\rightarrow \neg happens(potential_threat, 0, k)$

Gianluca Apriceno

Proposed solution

- Three tasks has to be solved:
 - 1 Object detection
 - 2 Object classification and relation detection
 - 3 Event recognition

Proposed solution

- Three tasks has to be solved:
 - 1 Object detection
 - 2 Object classification and relation detection
 - 3 Event recognition
- Use neural networks:
 - A ntw for detecting the objects (Det_{nn})
 - A ntw for predicate evaluation (P_{nn})

Proposed solution

- Three tasks has to be solved:
 - 1 Object detection
 - 2 Object classification and relation detection
 - 3 Event recognition
- Use neural networks:
 - A ntw for detecting the objects (Det_{nn})
 - A ntw for predicate evaluation (P_{nn})
- Combines ntws outputs with background knowledge:
 - → DeepProbLog prototype

Event Generation Framework

• Different level of annotations

13 / 19

Gianluca Apriceno SML Journal Club

Event Generation Framework

- Different level of annotations
- Manually curated and not extensible

13 / 19

Gianluca Apriceno SML Journal Club

Event Generation Framework

- Different level of annotations
- Manually curated and not extensible
- Mnist digits video generator:
 - video with different length and different number of objects
 - simple events (appear, disapper, enter and exit)
 - structured events (join_add, join_sub and split)
 - narrative (name, class, position, simple events and structured events)

Event Generation Framework

Join_add

Join_sub

Split

Experiments

Research question:

Has a neuro-symbolic solution an advantage in recognizing Se with respect to a fully neural approach?

15 / 19

• Research question:

Has a neuro-symbolic solution an advantage in recognizing Se with respect to a fully neural approach?

• Evaluation:

- correct classification of the video
- correct classification of the objects (i.e. digits)
- generalization to unseen outcomes (i.e. no explicit supervision)

15 / 19

Scenario:

- videos of 10 frames
- digits appear anytime within the first half of the video, and only disappear if they join together
- three events:

Join_add Join_sub No_join

Learning:

```
\{happens(join\_add(x,y),1,T), outcome(join\_add(x,y),z), digit(z,4)\}
\{happens(join\_sub(x,y),1,T), outcome(join\_sub(x,y),z), digit(z,2)\}
\{\neg happens(join\_add(x,y),1,T), \neg happens(join\_sub(x,y),1,T)\}
```

15 / 19

Learning:

- train & validation (1800 and 150 videos):
 - → join_add outcome from 2 to 7
 - → join_sub outcome from 0 to 7
 - → no_join
- test (180 videos):
 - → join_add outcome from 2 to 9
 - → join_sub outcome from 0 to 8
 - → no_join

Event recognition approaches

SML Journal Club 16 / 19

Gianluca Apriceno

Fully neural approach

Neuro symbolic approach

```
nn(mnist_net, [I, V, T], Y, [0,1,2,3,4,5,6,7,8,9,-1]) :: digit(I, V, T, Y).
join_add_res(V, Z) :-
                                            join_sub_res(V, Z) :-
    between(0, 4, T1),
                                                between(0, 4, T1),
    digit(0, V, T1, X),
                                                digit(0, V, T1, X),
    X > 0, X < 9,
                                                X > 0
    digit(1, V, T1, Y),
                                                digit(1, V, T1, Y),
    Y > 0, Y < 10 - X.
                                                Y > 0.
    digit(0, V, 9, Z),
                                                digit(0, V, 9, Z),
    Z \text{ is } X + Y, Z > 1,
                                                Z is abs(X-Y).
    digit(1, V, 9, -1).
                                                digit(1, V, 9, -1).
no_join(V) := digit(1, V, 9, X), X = -1.
```

Gianluca Apriceno

Results

Neural approach

DeepProbLog

Neural approach

DeepProbLog

4 D > 4 A > 4 B > 4 B > B 900

Conclusion

Summary:

- neuro-symbolic approach based on DeepProbLog for Se recognition
- end-to-end training using shallow annotations
- comparison with pure neural approach:
 - 1) train without direct supervision on some classes
 - 2) explainability

Gianluca Apriceno

Thank you!