Learning and reasoning with

probabilistic satisfiability modulo theories
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Concerns on Al

Can we enforce and/or verify: safety, robustness, ... ?
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Concerns on Al other systems?

o t
Lo ioiom].

Not as concerned when we: catch a flight / ride a train / get a CT scan
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Formal verification - the “traditional” approach

1) Logical modelling of the system S and property P:

“The elevator door doesn't open
if the brakes are off.”
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Formal verification - the “traditional” approach

1) Logical modelling of the system S and property P:

“The elevator door doesn't open
if the brakes are off.”

4 +
S=((-.V..)e A L) P = —=(DoorOpen N BrakesOff)

2) Verification of P is reduced to a decision problem:
SAT(S A =P)? — {YES, NO}
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Formal verification - continuous/discrete models

Satisfiability Modulo Theories (SMT) = Logic + Specialized theories

(AV read(write(a,i,v),i) = v) A (read(a,j)) — A)  arrays
(Av(a=b— f(a)=g(b))) A((f(-) =g(.)) = A) uninterpreted functions

(Av (10x + 13y <z+17/8)) A ((z > 1/3) — A) linear algebra

“If the elevator speed is greater than k, the alarm is on.”

P = —(speed > k) V AlarmOn
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When YES/NO are not enough

@ we need to quantify properties like robustness/fairness?
_ What if @ the system is nondeterministic?

@ the environment/input is high-dimensional and uncertain?
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@ we need to quantify properties like robustness/fairness?
_ What if @ the system is nondeterministic?

@ the environment/input is high-dimensional and uncertain?

—((SpeedLimit = 120) A SchoolCrossing)
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When YES/NO are not enough

@ we need to quantify properties like robustness/fairness?
_ What if @ the system is nondeterministic?

@ the environment/input is high-dimensional and uncertain?

° Pr(%) = Pr(%ﬂ) =€ ... we don't care about these inputs!
@ We need a probabilistic model of the environment P(X)

@ ...and verify whether properties hold with probability > k
probabilistic formal verification!
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Weighted Model Counting to the rescuel!

Weighted sum of the models of a logical formula

WMC(B,w) = 3 wiy)
HE=A
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Weighted Model Counting to the rescuel!

Weighted sum of the models of a logical formula

WMC(A, w) = 3 w(y)

HE=A
w factorizes over the literals:
A
AAN—-B
W(/ﬁl\) = ki = w(A) - w(=B) T | ky | ks
ANB B
W(f/;z\) = kp = w(A) - w(B) 1 k3| ky
1T

Marginal inference via WMC

WMC(A A B, w) ky

Pr(B|A) = =
(B = —Wmcaw) ~ Rtk

8/23



WMC for safe Al

Our model: a (parametric) PLP P

01 :: stress(X) < person(X).
0> :: influences(X, Y) < person(X),
person(Y)

smokes(X) < stress(X).

smokes(X) < friend(X, Y),
influences( Y, X),
smokes(Y).

person(a). person(b). person(c).

friend(a, b).

evidence(friend(a, b)).

evidence(smokes(c)).

9/23



WMC for safe Al

Our model: a (parametric) PLP P

1) Conversion in weighted prop. logic
A = person(a) A person(b)
P — Pground — (A, w)

A (auxy N\ person(b) — stress(b)) V

w(person(a)) =1
w(person(b)) =1

w(auxy) = 01

w(aux2) = 0>
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WMC for safe Al

Our model: a (parametric) PLP P

1) Conversion in weighted prop. logic
P — Pground — (A, w)

2) Knowledge compilation:

friends(a,b)

A — Ca

© WMC(A, w) computed in ©(|Cal)

@ Ca is differentiable w.r.t. w

I —stress(b) ‘ Ifriends(b.(:) I I stress(c) |
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WMC for safe Al

Our model: a (parametric) PLP P

1) Conversion in weighted prop. logic
P — Pground — (A, w)
Query ¥ Probabilty 2) Knowledge compilation:

funds(fwo,paolo) 0
A — Ca

influences(paolo,pollo) .2

© WMC(A, w) computed in ©(|Cal)

smokes(paolo) 03 @ Cj is differentiable w.r.t. w

Inference (and learning) in a model that

satisfy constraints by construction!

9/23



WMC for safe Al

WMC-based inference can be expensive (even with neural predicates)..
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..what if we can't afford it at inference time?
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WMC for safe Al

WMC-based inference can be expensive (even with neural predicates)..
..what if we can't afford it at inference time?

Can we still leverage our background knowledge A?
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WMC for safe Al

Our model: a differentiable function

f(x) = Pr(Y|X = x) where Pr(Y; = T|X) =0,
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WMC for safe Al

Our model: a differentiable function

f(x) = Pr(Y|X = x) where Pr(Y; = T|X) =0,

Regularize f w.r.t. a constraint A over Y:

SLA(©) = —logWMC(A, ©)

I—/ngnei H (1-10))

pEAYEp  —Yjep

...it"'s a big log-polynomial!
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:_/OgZHH’ H (1-10))
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WMC for safe Al

Our model: a differentiable function

f(x) = Pr(Y|X = x) where Pr(Y; = T|X) =0,

Regularize f w.r.t. a constraint A over Y:

SLA(©) = —logWMC(A, ©)

=—/OgZH9,- H (1-10))

pEAYEp  —Yjep

Once f is trained, we can discard Ca

Efficient inference that

satisfy constraints in expectation!
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WMC for safe Al

What does “in expectation” mean?
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WMC for safe Al

What does “in expectation” mean?
Point-wise evaluations can be misleading..

..how can we be sure that A is satisfied enough in the real world?
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WMC for safe Al

Our model: a binarized NN
o NV:Z" - BY

@ weights w € {—1,1} and step activations

Y = sign({w, X) + b)
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WMC for safe Al

Our model: a binarized NN
o NV:Z" - BY

@ weights w € {—1,1} and step activations

1) Conversion N' — A
@ trivial encoding A is exponentially large

@ equicardinal A’ is found using MILP

#SAT(A) = #SAT(A")

2) Prior P(X)? Reduction WMC — #SAT

Y = sign({w, X) + b)

verifying quantitative properties!

Approximate (e, d)-counting for J
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WMC for safe Al

In discrete settings, WMC can be used for:

learning models that satisfy constraints by construction J
learning models that satisfy constraints in expectation J
verifying quantitative properties of learned models J
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WMC for safe Al

In discrete settings, WMC can be used for:

learning models that satisfy constraints by construction J
learning models that satisfy constraints in expectation J
verifying quantitative properties of learned models J

..but what about continuous or hybrid models?
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Generalizing WMC

SMT formulas
w/ algebraic constraints

0.0

x=0<y)A(y<3)A(0<x)
AA = (x <2))
ANEA=((T<x)A (x+y <3)))
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Generalizing WMC

SMT formulas + density functions
w/ algebraic constraints over continuous variables

— w(a,y.A)
— w(z.y.~A)

753N
2

\
,/41\" N\

0.0

X=0<y)A(y<3)A(0<x) w(x,y,A) = [A[(=x* = y* + 2x + 3y)
AA = (x < 2)) + [~AJ(=2x — 2y + 6)
AA= (LX) A(x+y £ 3))
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Weighted Model Integration

WMI(A, w) = DouEA w(p)
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Weighted Model Integration

WMI(A, w) =3, a w(i) = Xuea J, f(x)dx

‘!(]_SX)
m=q (x<2)
(x+y<3)

1 3—x
w(p1) :/ / —x* — y? +2x+ 3y dy dx
o Jo

WMI(x, w) = w(p)+
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Weighted Model Integration

WMI(A, w) =3, a w(i) = Xuea J, f(x)dx

(1<x)
pe =94 (x<2)
(x+y<3)

2 3—x
w(p2) = / / —x* — y? +2x+ 3y dy dx
1 Jo

WMI(x, w) = w(p1) + w(pz)+
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Weighted Model Integration

WMI(A, w) =3, a w(i) = Xuea J, f(x)dx

‘!(1 SX)
uz =19 (x<2)
—(x+y <3)

1 3
w(us) = / / —x*> — y* 4+ 2x + 3y dy dx
0 3—x

WMI(x, w) = w(p1) + w(pa) + w(pus)+
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Weighted Model Integration

WMI(A, w) =3, a w(i) = Xuea J, f(x)dx

(1<x)
pa =4 (x<2)
—(x+y <3)

2 3
w(ps) = / / —x*> — y* 4+ 2x + 3y dy dx
1 3—x

WMI(x, w) = w(p) + w(pz) + w(pus) + w(pa)+
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Weighted Model Integration

WMI(A, w) =3, a w(i) = Xuea J, f(x)dx

-A
(1<x)
ps =4 (x<2)
(x+y<3)

2 3—x
W(/L5):/ / —2x — 2y + 6 dy dx
1 Jo

WMI(x, w) = w(pa) + w(pz) + w(ps) + w(ps) + w(ps)+
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Weighted Model Integration

WMI(A, w) =3, a w(i) = Xuea J, f(x)dx

-A
(1<x)
pe =4 ~(x <2)
(x+y<3)

3 3—x
W(/Lﬁ):/ / —2x — 2y + 6 dy dx
2 Jo

WMI(x, w) = w(pa)+w(p2)+w(ps) +w(pa) +w(ps) +w ()
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Weighted Model Integration

Two subtasks:
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Weighted Model Integration

Two subtasks:

1) Enumerating convex integration regions p (A-SMT)
— as hard as #SAT (#P-complete)

2) Continuous integration
— as hard as computing the volume of a polytope (#P-hard)

The combination of 1) and 2) makes it very tricky
— successful ideas in WMC do not always apply

Why even bother?

- This is a very general framework!
- Many inference algorithms are specific polytime WMI “in disguise”
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WMi(x, w) = // (4 7) dydx+// 4, ) dy dx
+/0 /3_XfA(x.y)dydx+/1 /3_XfA<xfy)dydx
+/12/03X Falx.y) dy dx+/23/03x Falx.y) dy d
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Computing WMI efficiently
WMI(x, w) = u/" u/f (x,y) dy dx +—U/P U/P (x,y) dy dx

+/ / fa(x,y) dy dx +/ / fa(x,y) dy dx
0 3—x 1 3—x
2 3—x 3 3—x

+/ / f-a(x,y) dy dx+/ / f-a(x,y) dy dx
1 Jo 2 Jo

w(py)

2 3
= / / fa(x,y) dy dx
o Jo
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Computing WMI efficiently
WMI(x, w) = u/" u/f (x,y) dy dx +—J/P J/P (x,y) dy dx

+/ / fa(x,y) dy dx +/ / fa(x,y) dy dx
0 3—x 1 3—x
2 3—x 3 3—x

+/ / f-a(x,y) dy dx+/ / f-a(x,y) dy dx
1 Jo 2 Jo

w(py) w(py)

1 2
2 3 3 p3—x
= / / fa(x,y) dy dx+/ / f-a(x,y) dy dx
o Jo 1 Jo
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Computing WMI efficiently

How?
Knowledge compilation
SMT oracles
Tractable subclasses
Monte Carlo estimates
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Tractable subclasses
Monte Carlo estimates

Algorithm Combinatorial Enumeration Integration Expressiveness
Exact | Method Exact | Sym. | Method Parametric form | Assumptions
A e e
| WMEPA | [ v | Mul._polynomial |
PRAISE v DPLL-PIMT v v PIMT Mul. polynomial -
SVE v KC-XADD v v XADD Mul. polynomial -
BR v KC-XADD v v XADD Mul. polynomial -
F-XSDD v KC-XSDD v v XADD / PSI Mul. polynomial -
WMI-SDD v KC-XSDD v Scipy / LattE Mul. polynomial -
Symbo v KC-XSDD v v PSI Mul. Gaussian uc
Sampo v KC-XSDD MC Mul. Gaussian -
SMI v AND/OR search v v univ. integration Biv. monomials BC, CNF, A
AprxWMI-CNF hashing + SMT 7 LattE Mul. polynomial CNF
AprxWMI-DNF FPRAS v LattE Mul. polynomial DNF
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Computing WMI efficiently

How?
Knowledge compilation
SMT oracles guided by applications in safe Al
Tractable subclasses
Monte Carlo estimates

Algorithm Combinatorial Enumeration Integration Expressiveness
Exact | Method Exact | Sym. | Method Parametric form | Assumptions
A e e
| WMEPA | [ v | Mul._polynomial |
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WMI for safe Al

learning models that satisfy constraints by construction? J

Structure
— support/constraints A (if not/partially given)
— w(X; ©) = [if ¢ then wq(X; ©1) else wa(X; ©2)]
[w1(X1;©1) X wa(Xa2; ©2)]
[61 - wi(X; ©1) + 62 - wa(X; ©2)]
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WMI for safe Al

learning models that satisfy constraints by construction? J

Structure Parameters
— support/constraints A (if not/partially given) — argming L(©)
— w(X; ©) = [if ¢ then wq(X; ©1) else wa(X; ©2)]

[w1(X1; ©1) X wa(Xa2; ©2)]

[01 - wi(X; ©1) + 02 - wa(X; ©2)]

20/23



WMI for safe Al

learning models that satisfy constraints in expectation? J
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WMI for safe Al

learning models that satisfy constraints in expectation? J

Efficient WMI evaluation
Tractable classes?
Knowledge compilation?
Sampling?

Constraints

Logical + linear?
Nonlinear? (E = mc?)

What models to target

Piecewise polynomials?
Exponential family?

21/23



WMI for safe Al

verifying quantitative properties? J
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WMI for safe Al

verifying quantitative properties? J

We can encode:
Y = max(0, (w, X) + b)

Decision trees

@ Support vector machines
ReLU networks

@ a g Sum-product networks

A= (h={w,X)+b)
A((h<0) = (Y =0))
A((h>0)— (Y =h))
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WMI for safe Al

verifying quantitative properties? J

We can encode:
Y = max(0, (w, X) + b)

Decision trees
@ Support vector machines
ReLU networks
@ G g Sum-product networks
@ We can verify properties like:
Pr(Hire|Female) = Pr(Hire|Male)
A = (h=(w,X)+b) (with arbitrary priors over X!)

A((h<0) = (Y =0)) .
A((h>0) = (Y = h)) Can we scale?
Possibly, focusing on specific models/properties!
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The final slide

e WMI is a very general framework for constrained inference

...and it is not THAT scary!

@ There are many potential applications of WMI in safe Al

...also many algorithmic challenges (I haven't talked about)

Thank you!

questions / feedback / collaborations are welcome!

23/23



