Learning and reasoning with probabilistic satisfiability modulo theories

Paolo Morettin

Concerns on AI

Can we enforce and/or verify: safety, robustness, ... ?

Concerns on AI other systems?

Not as concerned when we: catch a flight / ride a train / get a CT scan

Formal verification - the "traditional" approach

1) Logical modelling of the system S and property P:

"The elevator door doesn't open if the brakes are off."

Formal verification - the "traditional" approach

1) Logical modelling of the system S and property P:

$$\stackrel{\downarrow}{S} = ((... \lor ...) ... \land ...)$$

"The elevator door doesn't open if the brakes are off."

$$\downarrow$$

 $P = \neg(DoorOpen \land BrakesOff)$

Formal verification - the "traditional" approach

1) Logical modelling of the system S and property P:

$$S = ((... \lor ...) ... \land ...)$$

"The elevator door doesn't open if the brakes are off."

$$\downarrow P = \neg(DoorOpen \land BrakesOff)$$

2) Verification of *P* is reduced to a **decision problem**:

$$SAT(S \land \neg P)? \rightarrow {YES, NO}$$

Formal verification - continuous/discrete models

Satisfiability Modulo Theories (SMT) = Logic + Specialized theories

 $\begin{array}{l} (A \lor \mathit{read}(\mathit{write}(a,i,v),i) = v) \land (\mathit{read}(a,j)) \rightarrow A) & \text{arrays} \\ (A \lor (a = b \rightarrow f(a) = g(b))) \land ((f(.) = g(.)) \rightarrow A) & \text{uninterpreted functions} \end{array}$

 $(A \lor (10x + 13y \le z + 17/8)) \land ((z \ge 1/3) \rightarrow A)$ linear algebra

. . .

"If the elevator speed is greater than k, the alarm is on."

 $P = \neg$ (speed > k) \lor AlarmOn

• we need to quantify properties like robustness/fairness?

- the system is nondeterministic?
- the environment/input is high-dimensional and uncertain?

• we need to *quantify* properties like robustness/fairness?

...What if:

- the system is nondeterministic?
- the environment/input is high-dimensional and uncertain?

 \neg ((*SpeedLimit* = 120) \land *SchoolCrossing*)

• we need to *quantify* properties like robustness/fairness?

- the system is nondeterministic?
- the environment/input is high-dimensional and uncertain?

• we need to quantify properties like robustness/fairness?

- the system is nondeterministic?
- the environment/input is high-dimensional and uncertain?

• we need to quantify properties like robustness/fairness?

- the system is nondeterministic?
- the environment/input is high-dimensional and uncertain?

• we need to quantify properties like robustness/fairness?

- the system is nondeterministic?
- the environment/input is high-dimensional and uncertain?

•
$$Pr($$
 = $Pr($ = $e \dots$ we don't care about these inputs!

• we need to quantify properties like robustness/fairness?

...What if:

- the system is nondeterministic?
 - the environment/input is high-dimensional and uncertain?

•
$$Pr($$
 = $Pr($ = $e \dots$ we don't care about these inputs!

• We need a probabilistic model of the environment P(X)

• we need to quantify properties like robustness/fairness?

- the system is nondeterministic?
 - the environment/input is high-dimensional and uncertain?

•
$$Pr($$
 = $Pr($ = $ef{Pr}($ =

- We need a probabilistic model of the environment P(X)
- ...and verify whether properties hold with probability $\geq k$

• we need to quantify properties like robustness/fairness?

...What if:

- the system is nondeterministic?
 - the environment/input is high-dimensional and uncertain?

•
$$Pr($$
 = $Pr($ = $e \dots$ we don't care about these inputs!

- We need a probabilistic model of the environment P(X)
- ...and verify whether properties hold with probability $\geq k$

probabilistic formal verification!

Weighted Model Counting to the rescue!

Weighted sum of the models of a logical formula

$$WMC(\Delta, w) = \sum_{\mu \models \Delta} w(\mu)$$

Weighted Model Counting to the rescue!

Weighted sum of the models of a logical formula

$$\mathit{WMC}(\Delta, w) = \sum_{\mu \models \Delta} w(\mu)$$

w factorizes over the literals:

$$w(\overbrace{\mu_{1}}^{A \land \neg B}) = k_{1} = w(A) \cdot w(\neg B)$$
$$w(\overbrace{\mu_{2}}^{A \land B}) = k_{2} = w(A) \cdot w(B)$$

Weighted Model Counting to the rescue!

Weighted sum of the models of a logical formula

$$\mathit{WMC}(\Delta, w) = \sum_{\mu \models \Delta} w(\mu)$$

w factorizes over the literals:

$$w(\overbrace{\mu_{1}}^{A \land \neg B}) = k_{1} = w(A) \cdot w(\neg B)$$
$$w(\overbrace{\mu_{2}}^{A \land B}) = k_{2} = w(A) \cdot w(B)$$

Marginal inference via WMC

$$Pr(B|A) = \frac{WMC(A \land B, w)}{WMC(A, w)} = \frac{k_2}{k_1 + k_2}$$

Our model: a (parametric) PLP P

```
\theta_1 :: stress(X) \leftarrow person(X).
\theta_2 :: influences(X, Y) \leftarrow person(X),
                             person(Y).
smokes(X) \leftarrow stress(X).
smokes(X) \leftarrow friend(X, Y),
                influences(Y, X),
                 smokes(Y).
person(a). person(b). person(c).
friend(a, b).
evidence(friend(a, b)).
evidence(smokes(c)).
```

. . .

Our model: a (parametric) PLP P

1) Conversion in weighted prop. logic

$$P
ightarrow P_{ ext{ground}}
ightarrow \langle \Delta, w
angle$$

```
\Delta = person(a) \land person(b)...
```

```
\land (\textit{aux}_1 \land \textit{person}(b) \rightarrow \textit{stress}(b)) \lor \\ ...
```

```
w(person(a)) = 1w(person(b)) = 1\dotsw(aux_1) = \theta_1w(aux_2) = \theta_2
```

Our model: a (parametric) PLP P

1) Conversion in weighted prop. logic

$$P
ightarrow P_{ ext{ground}}
ightarrow \langle \Delta, w
angle$$

2) Knowledge compilation:

 $\Delta \to {\it C}_\Delta$

- $WMC(\Delta, w)$ computed in $\Theta(|C_{\Delta}|)$
- C_{Δ} is differentiable w.r.t. w

Our model: a (parametric) PLP P

1) Conversion in weighted prop. logic

$$P
ightarrow P_{ ext{ground}}
ightarrow \langle \Delta, w
angle$$

Query v	Probability
funds(fwo,paolo)	0
influences(paolo,pollo)	0.2
smokes(paolo)	0.3

2) Knowledge compilation:

 $\Delta \to {\it C}_\Delta$

- $WMC(\Delta, w)$ computed in $\Theta(|C_{\Delta}|)$
- C_{Δ} is differentiable w.r.t. w

Inference (and learning) in a model that

satisfy constraints by construction!

WMC-based inference can be expensive (even with neural predicates)..

WMC-based inference can be expensive (even with neural predicates)..

..what if we can't afford it at inference time?

WMC-based inference can be expensive (even with neural predicates)..

..what if we can't afford it at inference time?

Can we still leverage our background knowledge Δ ?

Our model: a differentiable function

 $f(\mathbf{x}) = Pr(\mathbf{Y}|\mathbf{X} = \mathbf{x})$ where $Pr(Y_i = \top |\mathbf{X}) = \theta_i$

Our model: a differentiable function

$$f(\mathbf{x}) = Pr(\mathbf{Y}|\mathbf{X} = \mathbf{x})$$
 where $Pr(Y_i = \top |\mathbf{X}) = \theta_i$

Regularize f w.r.t. a constraint Δ over **Y**:

... it's a big log-polynomial!

Our model: a differentiable function

 $f(\mathbf{x}) = Pr(\mathbf{Y}|\mathbf{X} = \mathbf{x})$ where $Pr(Y_i = \top |\mathbf{X}) = \theta_i$

Regularize f w.r.t. a constraint Δ over **Y**:

but we can use KC!

Our model: a differentiable function

 $f(\mathbf{x}) = Pr(\mathbf{Y}|\mathbf{X} = \mathbf{x})$ where $Pr(Y_i = \top |\mathbf{X}) = \theta_i$

Regularize f w.r.t. a constraint Δ over **Y**:

Once f is trained, we can discard C_{Δ}

Our model: a differentiable function

 $f(\mathbf{x}) = Pr(\mathbf{Y}|\mathbf{X} = \mathbf{x})$ where $Pr(Y_i = \top |\mathbf{X}) = \theta_i$

Regularize f w.r.t. a constraint Δ over **Y**:

Once f is trained, we can discard C_{Δ}

Efficient inference that

satisfy constraints in expectation!

What does "in expectation" mean?

What does "in expectation" mean?

Point-wise evaluations can be misleading ...

What does "in expectation" mean?

Point-wise evaluations can be misleading ...

..how can we be sure that Δ is satisfied enough in the real world?

Our model: a binarized NN

•
$$\mathcal{N}:\mathbb{Z}^N\to\mathbb{B}^M$$

• weights $w \in \{-1, 1\}$ and step activations

$$Y = sign(\langle w, \mathbf{X} \rangle + b)$$
Our model: a binarized NN

•
$$\mathcal{N}:\mathbb{Z}^N\to\mathbb{B}^M$$

• weights $w \in \{-1,1\}$ and step activations

1) Conversion
$$\mathcal{N}
ightarrow \Delta$$

$$Y = sign(\langle w, \mathbf{X} \rangle + b)$$

Our model: a binarized NN

- $\mathcal{N}: \mathbb{Z}^N \to \mathbb{B}^M$
- weights $w \in \{-1,1\}$ and step activations

1) Conversion $\mathcal{N} \to \Delta$

• *trivial* encoding Δ is exponentially large

$$Y = sign(\langle w, \mathbf{X} \rangle + b)$$

•
$$\mathcal{N}: \mathbb{Z}^N \to \mathbb{B}^M$$

• weights $w \in \{-1,1\}$ and step activations

1) Conversion $\mathcal{N} \to \Delta$

- trivial encoding Δ is exponentially large
- equicardinal Δ' is found using MILP

$$\#SAT(\Delta) = \#SAT(\Delta')$$

$$Y = sign(\langle w, \mathbf{X} \rangle + b)$$

$$Y = sign(\langle w, \mathbf{X} \rangle + b)$$

Our model: a binarized NN

•
$$\mathcal{N}: \mathbb{Z}^N \to \mathbb{B}^M$$

• weights $w \in \{-1,1\}$ and step activations

1) Conversion $\mathcal{N} \to \Delta$

- *trivial* encoding Δ is exponentially large
- equicardinal Δ' is found using MILP

$$\#SAT(\Delta) = \#SAT(\Delta')$$

2) Prior $P(\mathbf{X})$? Reduction WMC $\rightarrow \#$ SAT

$$Y = sign(\langle w, \mathbf{X} \rangle + b)$$

Our model: a binarized NN

•
$$\mathcal{N}: \mathbb{Z}^N \to \mathbb{B}^M$$

• weights $w \in \{-1, 1\}$ and step activations

1) Conversion $\mathcal{N} \to \Delta$

- trivial encoding Δ is exponentially large
- equicardinal Δ' is found using MILP

$$\#SAT(\Delta) = \#SAT(\Delta')$$

2) Prior $P(\mathbf{X})$? Reduction WMC $\rightarrow \#$ SAT

Approximate $\langle \epsilon, \delta \rangle$ -counting for

verifying quantitative properties!

In discrete settings, WMC can be used for:

learning models that satisfy constraints by construction

learning models that satisfy constraints in expectation

verifying quantitative properties of learned models

In discrete settings, WMC can be used for:

learning models that satisfy constraints by construction

learning models that satisfy constraints in expectation

verifying quantitative properties of learned models

..but what about continuous or hybrid models?

Generalizing WMC

 $\begin{array}{c} \mathsf{SMT} \text{ formulas} \\ \mathsf{w}/ \text{ algebraic constraints} \end{array}$

 $\chi = (0 \le y) \land (y \le 3) \land (0 \le x)$ $\land (A \to (x \le 2))$ $\land (\neg A \to ((1 \le x) \land (x + y \le 3)))$

Generalizing WMC

 $\begin{array}{c} \mathsf{SMT} \text{ formulas} \\ \mathsf{w}/ \text{ algebraic constraints} \end{array}$

 $\chi = (0 \le y) \land (y \le 3) \land (0 \le x)$ $\land (A \to (x \le 2))$ $\land (\neg A \to ((1 \le x) \land (x + y \le 3)))$

+ density functions over continuous variables

$$w(x, y, A) = [A](-x^2 - y^2 + 2x + 3y) + [\neg A](-2x - 2y + 6)$$

$$\mathit{WMI}(\Delta, w) = \sum_{\mu \models \Delta} w(\mu)$$

$$WMI(\Delta, w) = \sum_{\mu \models \Delta} w(\mu) = \sum_{\mu \models \Delta} \int_{\mu} f(\mathbf{x}) d\mathbf{x}$$

$$\mathit{WMI}(\Delta,w) = \sum_{\mu\models\Delta} w(\mu) = \sum_{\mu\models\Delta} \int_{\mu} f(\mathsf{x}) d\mathsf{x}$$

$$WMI(\chi, w) =$$

$$\mathit{WMI}(\Delta,w) = \sum_{\mu\models\Delta} w(\mu) = \sum_{\mu\models\Delta} \int_{\mu} f(\mathsf{x}) d\mathsf{x}$$

$$w(\mu_1) = \int_0^1 \int_0^{3-x} -x^2 - y^2 + 2x + 3y \, dy \, dx$$

 $WMI(\chi, w) = w(\mu_1) +$

$$\mathit{WMI}(\Delta,w) = \sum_{\mu \models \Delta} w(\mu) = \sum_{\mu \models \Delta} \int_{\mu} f(\mathsf{x}) d\mathsf{x}$$

$$w(\mu_2) = \int_1^2 \int_0^{3-x} -x^2 - y^2 + 2x + 3y \, dy \, dx$$

 $\mathit{WMI}(\chi,w) = w(\mu_1) + w(\mu_2) +$

$$\mathit{WMI}(\Delta,w) = \sum_{\mu \models \Delta} w(\mu) = \sum_{\mu \models \Delta} \int_{\mu} f(\mathsf{x}) d\mathsf{x}$$

$$w(\mu_3) = \int_0^1 \int_{3-x}^3 -x^2 - y^2 + 2x + 3y \, dy \, dx$$

 $WMI(\chi,w) = w(\mu_1) + w(\mu_2) + w(\mu_3) +$

$$\mathit{WMI}(\Delta,w) = \sum_{\mu\models\Delta} w(\mu) = \sum_{\mu\models\Delta} \int_{\mu} f(\mathbf{x}) d\mathbf{x}$$

$$w(\mu_4) = \int_1^2 \int_{3-x}^3 -x^2 - y^2 + 2x + 3y \, dy \, dx$$
$$WMI(\chi, w) = w(\mu_1) + w(\mu_2) + w(\mu_3) + w(\mu_4) + w(\mu_$$

$$\mathit{WMI}(\Delta,w) = \sum_{\mu \models \Delta} w(\mu) = \sum_{\mu \models \Delta} \int_{\mu} f(\mathsf{x}) d\mathsf{x}$$

$$w(\mu_5) = \int_1^2 \int_0^{3-x} -2x - 2y + 6 \, dy \, dx$$
$$WMI(\chi, w) = w(\mu_1) + w(\mu_2) + w(\mu_3) + w(\mu_4) + w(\mu_5) + w(\mu$$

$$\mathit{WMI}(\Delta,w) = \sum_{\mu \models \Delta} w(\mu) = \sum_{\mu \models \Delta} \int_{\mu} f(\mathsf{x}) d\mathsf{x}$$

$$w(\mu_6) = \int_2^3 \int_0^{3-x} -2x - 2y + 6 \, dy \, dx$$

 $WMI(\chi, w) = w(\mu_1) + w(\mu_2) + w(\mu_3) + w(\mu_4) + w(\mu_5) + w(\mu_6)$

Two subtasks:

Two subtasks:

1) **Enumerating** convex integration regions μ (λ -SMT)

 \rightarrow as hard as #SAT (#P-complete)

Two subtasks:

1) **Enumerating** convex integration regions μ (λ -SMT) \rightarrow as hard as #SAT (#P-complete)

2) Continuous integration

 \rightarrow as hard as computing the volume of a polytope (#P-hard)

Two subtasks:

1) **Enumerating** convex integration regions μ (λ -SMT) \rightarrow as hard as #SAT (#P-complete)

2) Continuous integration

ightarrow as hard as computing the volume of a polytope (#P-hard)

The **combination** of 1) and 2) makes it very tricky \rightarrow successful ideas in WMC do not always apply

Two subtasks:

1) **Enumerating** convex integration regions μ (λ -SMT) \rightarrow as hard as #SAT (#P-complete)

2) Continuous integration

ightarrow as hard as computing the volume of a polytope (#P-hard)

The **combination** of 1) and 2) makes it very tricky \rightarrow successful ideas in WMC do not always apply

Why even bother?

Two subtasks:

1) **Enumerating** convex integration regions μ (λ -SMT) \rightarrow as hard as #SAT (#P-complete)

2) Continuous integration

ightarrow as hard as computing the volume of a polytope (#P-hard)

The combination of 1) and 2) makes it very tricky

 \rightarrow successful ideas in WMC do not always apply

Why even bother?

- This is a very general framework!
- Many inference algorithms are specific polytime WMI "in disguise"

$$WMI(\chi, w) = \int_0^1 \int_0^{3-x} f_A(x, y) \, dy \, dx + \int_1^2 \int_0^{3-x} f_A(x, y) \, dy \, dx$$
$$+ \int_0^1 \int_{3-x}^3 f_A(x, y) \, dy \, dx + \int_1^2 \int_{3-x}^3 f_A(x, y) \, dy \, dx$$
$$+ \int_1^2 \int_0^{3-x} f_{\neg A}(x, y) \, dy \, dx + \int_2^3 \int_0^{3-x} f_{\neg A}(x, y) \, dy \, dx$$

$$WMI(\chi, w) = \int_{0}^{1} \int_{0}^{3-x} f_{A}(x, y) \, dy \, dx + \int_{1}^{2} \int_{0}^{3-x} f_{A}(x, y) \, dy \, dx \\ + \int_{0}^{1} \int_{3-x}^{3} f_{A}(x, y) \, dy \, dx + \int_{1}^{2} \int_{3-x}^{3} f_{A}(x, y) \, dy \, dx \\ + \int_{1}^{2} \int_{0}^{3-x} f_{\neg A}(x, y) \, dy \, dx + \int_{2}^{3} \int_{0}^{3-x} f_{\neg A}(x, y) \, dy \, dx \\ = \overbrace{\int_{0}^{2} \int_{0}^{3} f_{A}(x, y) \, dy \, dx}^{w(\mu_{1}^{*})}$$

$$\mathcal{WMI}(\chi, w) = \int_{0}^{1} \int_{0}^{3-x} f_{A}(x, y) \, dy \, dx + \int_{1}^{2} \int_{0}^{3-x} f_{A}(x, y) \, dy \, dx \\ + \int_{0}^{1} \int_{3-x}^{3} f_{A}(x, y) \, dy \, dx + \int_{1}^{2} \int_{3-x}^{3} f_{A}(x, y) \, dy \, dx \\ + \int_{1}^{2} \int_{0}^{3-x} f_{-A}(x, y) \, dy \, dx + \int_{2}^{3} \int_{0}^{3-x} f_{-A}(x, y) \, dy \, dx \\ = \underbrace{\int_{0}^{2} \int_{0}^{3} f_{A}(x, y) \, dy \, dx}_{0} + \underbrace{\int_{1}^{3} \int_{0}^{3-x} f_{-A}(x, y) \, dy \, dx}_{0} + \underbrace{\int_{0}^{4} \int_{0}^{4-x} f_{-A}(x, y) \, dy \, dx}_{0} + \underbrace{\int_{0}^{4-x} \int_{0}^{4-x} f_{-A}(x, y) \, dy \, dx}_{0}$$

How?

Knowledge compilation SMT oracles Tractable subclasses Monte Carlo estimates

How?

Knowledge compilation SMT oracles Tractable subclasses Monte Carlo estimates

Almonister	Combinatorial Enumeration		Integration			Expressiveness	
Algorithm	Exact	Method	Exact	Sym.	Method	Parametric form	Assumptions
WMI-CC	~	DPLL-SMT	~		LattE + CC	Mul. polynomial	UC
WMI-PA	\checkmark	DPLL-SMT	\checkmark		LattE	Mul. polynomial	-
PRAiSE	~	DPLL-PIMT	~	\checkmark	PIMT	Mul. polynomial	-
SVE	~	KC-XADD	~	\checkmark	XADD	Mul. polynomial	-
BR	\checkmark	KC-XADD	\checkmark	\checkmark	XADD	Mul. polynomial	-
F-XSDD	\checkmark	KC-XSDD	\checkmark	\checkmark	XADD / PSI	Mul. polynomial	-
WMI-SDD	~	KC-XSDD	~		Scipy / LattE	Mul. polynomial	-
Symbo	\checkmark	KC-XSDD	\checkmark	\checkmark	PSI	Mul. Gaussian	UC
Sampo	\checkmark	KC-XSDD			MC	Mul. Gaussian	-
SMI	~	AND/OR search	~	\checkmark	univ. integration	Biv. monomials	BC, CNF, A
MP-WMI	\checkmark	MP	\checkmark	\checkmark	Sympy	Biv. polynomial	BC, CNF, A
ReColn		MP	\checkmark	\checkmark	Sympy	Biv. polynomial	BC, CNF
AprxWMI-CNF		hashing + SMT	~		LattE	Mul. polynomial	CNF
AprxWMI-DNF		FPRAS	 ✓ 		LattE	Mul. polynomial	DNF

How?

Knowledge compilation SMT oracles Tractable subclasses Monte Carlo estimates

Almonister	Combinatorial Enumeration		Integration			Expressiveness	
Algorithm	Exact	Method	Exact	Sym.	Method	Parametric form	Assumptions
WMI-CC	~	DPLL-SMT	~		LattE + CC	Mul. polynomial	UC
WMI-PA	\checkmark	DPLL-SMT	\checkmark		LattE	Mul. polynomial	-
PRAiSE	~	DPLL-PIMT	~	\checkmark	PIMT	Mul. polynomial	-
SVE	~	KC-XADD	~	\checkmark	XADD	Mul. polynomial	-
BR	\checkmark	KC-XADD	\checkmark	\checkmark	XADD	Mul. polynomial	-
F-XSDD	\checkmark	KC-XSDD	\checkmark	\checkmark	XADD / PSI	Mul. polynomial	
WMI-SDD	~	KC-XSDD	~		Scipy / LattE	Mul. polynomial	-
Symbo	\checkmark	KC-XSDD	\checkmark	\checkmark	PSI	Mul. Gaussian	UC
Sampo	\checkmark	KC-XSDD			MC	Mul. Gaussian	-
SMI	~	AND/OR search	~	\checkmark	univ. integration	Biv. monomials	BC, CNF, A
MP-WMI	\checkmark	MP	\checkmark	\checkmark	Sympy	Biv. polynomial	BC, CNF, A
ReColn		MP	\checkmark	\checkmark	Sympy	Biv. polynomial	BC, CNF
AprxWMI-CNF		hashing + SMT	~		LattE	Mul. polynomial	CNF
AprxWMI-DNF		FPRAS	 ✓ 		LattE	Mul. polynomial	DNF

Research focused on theory and algorithms

How?

Knowledge compilation SMT oracles Tractable subclasses Monte Carlo estimates

guided by applications in safe AI

Almonishum	Combinatorial Enumeration		Integration			Expressiveness	
Algorithm	Exact	Method	Exact	Sym.	Method	Parametric form	Assumptions
WMI-CC	~	DPLL-SMT	~		LattE + CC	Mul. polynomial	UC
WMI-PA	\checkmark	DPLL-SMT	\checkmark		LattE	Mul. polynomial	-
PRAiSE	~	DPLL-PIMT	\checkmark	\checkmark	PIMT	Mul. polynomial	-
SVE	~	KC-XADD	\checkmark	\checkmark	XADD	Mul. polynomial	-
BR	\checkmark	KC-XADD	\checkmark	\checkmark	XADD	Mul. polynomial	-
F-XSDD	\checkmark	KC-XSDD	\checkmark	\checkmark	XADD / PSI	Mul. polynomial	-
WMI-SDD	~	KC-XSDD	\checkmark		Scipy / LattE	Mul. polynomial	-
Symbo	\checkmark	KC-XSDD	\checkmark	\checkmark	PSI	Mul. Gaussian	UC
Sampo	\checkmark	KC-XSDD			MC	Mul. Gaussian	-
SMI	~	AND/OR search	~	\checkmark	univ. integration	Biv. monomials	BC, CNF, A
MP-WMI	\checkmark	MP	\checkmark	\checkmark	Sympy	Biv. polynomial	BC, CNF, A
ReColn		MP	\checkmark	\checkmark	Sympy	Biv. polynomial	BC, CNF
AprxWMI-CNF		hashing + SMT	~		LattE	Mul. polynomial	CNF
AprxWMI-DNF		FPRAS	\checkmark		LattE	Mul. polynomial	DNF

Research focused on theory and algorithms

learning models that satisfy constraints by construction?

learning models that satisfy constraints by construction?

Structure

learning models that satisfy constraints by construction?

Structure

 \rightarrow support/constraints Δ (*if not/partially given*)

learning models that satisfy constraints by construction?

Structure

learning models that satisfy constraints by construction?

Structure

Parameters

 $\rightarrow \operatorname{argmin}_{\Theta} \mathcal{L}(\Theta)$
learning models that satisfy constraints in expectation?

learning models that satisfy constraints in expectation?

Efficient WMI evaluation

Tractable classes? Knowledge compilation? Sampling?

learning models that satisfy constraints in expectation?

Efficient WMI evaluation

Tractable classes? Knowledge compilation? Sampling?

Constraints

Logical + linear? Nonlinear? ($E = mc^2$)

learning models that satisfy constraints in expectation?

Efficient WMI evaluation

Tractable classes? Knowledge compilation? Sampling?

Constraints

Logical + linear? Nonlinear? ($E = mc^2$)

What models to target

Piecewise polynomials? Exponential family?

 $Y = max(0, \langle w, \mathbf{X} \rangle + b)$

We can encode:

Decision trees Support vector machines ReLU networks Sum-product networks

$$egin{aligned} \Delta &= (h = \langle w, \mathbf{X}
angle + b) \ &\wedge ((h \leq 0)
ightarrow (\mathbf{Y} = 0)) \ &\wedge ((h > 0)
ightarrow (\mathbf{Y} = h)) \end{aligned}$$

 $Y = max(0, \langle w, \mathbf{X} \rangle + b)$

We can encode:

Decision trees Support vector machines ReLU networks Sum-product networks

We can verify properties like:

Pr(Hire|Female) = Pr(Hire|Male)

(with arbitrary priors over X!)

$$egin{aligned} \Delta &= (h = \langle w, \mathbf{X}
angle + b) \ &\wedge \left((h \leq 0)
ightarrow (Y = 0)
ight) \ &\wedge \left((h > 0)
ightarrow (Y = h)
ight) \end{aligned}$$

 $Y = max(0, \langle w, \mathbf{X} \rangle + b)$

We can encode:

Decision trees Support vector machines ReLU networks Sum-product networks

We can verify properties like:

Pr(Hire|Female) = Pr(Hire|Male)

(with arbitrary priors over X!)

Can we scale?

Possibly, focusing on specific models/properties!

$$A = (h = \langle W, \mathbf{X} \rangle + b)$$

$$\land ((h \le 0) \to (Y = 0))$$

$$\land ((h > 0) \to (Y = h))$$

 $(\dots, \mathbf{V}) + \mathbf{h}$

The final slide

The final slide

• WMI is a very general framework for constrained inference

The final slide

• WMI is a very general framework for constrained inference

...and it is not THAT scary!

• WMI is a very general framework for constrained inference

...and it is not THAT scary!

• There are many potential applications of WMI in safe AI

• WMI is a very general framework for constrained inference

...and it is not THAT scary!

• There are many potential applications of WMI in safe AI

...also many algorithmic challenges (I haven't talked about)

• WMI is a very general framework for constrained inference

...and it is not THAT scary!

• There are many potential applications of WMI in safe AI

...also many algorithmic challenges (I haven't talked about)

Thank you!

questions / feedback / collaborations are welcome!