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Concerns on AI

Can we enforce and/or verify: safety, robustness, ... ?
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Concerns on AI other systems?

Not as concerned when we: catch a flight / ride a train / get a CT scan
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Formal verification - the “traditional” approach

1) Logical modelling of the system S and property P:

“The elevator door doesn’t open
if the brakes are off.”
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1) Logical modelling of the system S and property P:

“The elevator door doesn’t open
if the brakes are off.”

↓
S = ((... ∨ ...)... ∧ ...)

↓
P = ¬(DoorOpen ∧ BrakesOff )

2) Verification of P is reduced to a decision problem:

SAT (S ∧ ¬P)? → {YES,NO}

4 / 23



Formal verification - continuous/discrete models

Satisfiability Modulo Theories (SMT) = Logic + Specialized theories

(A ∨ read(write(a, i , v), i) = v) ∧ (read(a, j))→ A) arrays
(A ∨ (a = b → f (a) = g(b))) ∧ ((f (.) = g(.))→ A) uninterpreted functions

...
(A ∨ (10x + 13y ≤ z + 17/8)) ∧ ((z ≥ 1/3)→ A) linear algebra

“If the elevator speed is greater than k, the alarm is on.”

P = ¬(speed > k) ∨ AlarmOn
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When YES/NO are not enough

...What if:

we need to quantify properties like robustness/fairness?
the system is nondeterministic?
the environment/input is high-dimensional and uncertain?
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¬((SpeedLimit = 120) ∧ SchoolCrossing)
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...What if:

we need to quantify properties like robustness/fairness?
the system is nondeterministic?
the environment/input is high-dimensional and uncertain?

Pr( ) = Pr( ) = ε ... we don’t care about these inputs!

We need a probabilistic model of the environment P(X )

...and verify whether properties hold with probability ≥ k

probabilistic formal verification!
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Weighted Model Counting to the rescue!

Weighted sum of the models of a logical formula

WMC(∆,w) =
∑

µ|=∆
w(µ)
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Weighted Model Counting to the rescue!

Weighted sum of the models of a logical formula

WMC(∆,w) =
∑

µ|=∆
w(µ)

w factorizes over the literals:

w(
A∧¬B︷︸︸︷
µ1 ) = k1 = w(A) · w(¬B)

w(
A∧B︷︸︸︷
µ2 ) = k2 = w(A) · w(B)

Marginal inference via WMC

Pr(B|A) = WMC(A ∧ B,w)
WMC(A,w) = k2

k1 + k2
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WMC for safe AI

θ1 :: stress(X)← person(X).
θ2 :: influences(X ,Y )← person(X),

person(Y ).
smokes(X)← stress(X).
smokes(X)← friend(X ,Y ),

influences(Y ,X),
smokes(Y ).

person(a). person(b). person(c).
friend(a, b).
...

evidence(friend(a, b)).
evidence(smokes(c)).
...

Our model: a (parametric) PLP P
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WMC for safe AI

∆ = person(a) ∧ person(b)
...

∧ (aux1 ∧ person(b)→ stress(b)) ∨
...

w(person(a)) = 1
w(person(b)) = 1
...

w(aux1) = θ1

w(aux2) = θ2

Our model: a (parametric) PLP P

1) Conversion in weighted prop. logic

P → Pground → 〈∆,w〉
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Our model: a (parametric) PLP P

1) Conversion in weighted prop. logic

P → Pground → 〈∆,w〉

2) Knowledge compilation:

∆→ C∆

WMC(∆,w) computed in Θ(|C∆|)
C∆ is differentiable w.r.t. w

Inference (and learning) in a model that

satisfy constraints by construction!
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WMC for safe AI

WMC-based inference can be expensive (even with neural predicates)..

10 / 23



WMC for safe AI

WMC-based inference can be expensive (even with neural predicates)..

..what if we can’t afford it at inference time?

10 / 23



WMC for safe AI

WMC-based inference can be expensive (even with neural predicates)..

..what if we can’t afford it at inference time?

Can we still leverage our background knowledge ∆?
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WMC for safe AI

Our model: a differentiable function

f (x) = Pr(Y|X = x) where Pr(Yi = >|X) = θi
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Our model: a differentiable function

f (x) = Pr(Y|X = x) where Pr(Yi = >|X) = θi

Regularize f w.r.t. a constraint ∆ over Y:

SL∆(Θ) = −logWMC(∆,Θ)

= −log
∑
µ|=∆

∏
Yi∈µ

θi
∏
¬Yj∈µ

(1− θj )

...it’s a big log-polynomial!
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WMC for safe AI

but we can use KC!

Our model: a differentiable function
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Our model: a differentiable function

f (x) = Pr(Y|X = x) where Pr(Yi = >|X) = θi

Regularize f w.r.t. a constraint ∆ over Y:

SL∆(Θ) = −logWMC(∆,Θ)

= −log
∑
µ|=∆

∏
Yi∈µ

θi
∏
¬Yj∈µ

(1− θj )

Once f is trained, we can discard C∆

Efficient inference that

satisfy constraints in expectation!
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WMC for safe AI

What does “in expectation” mean?
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WMC for safe AI

What does “in expectation” mean?

Point-wise evaluations can be misleading..
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WMC for safe AI

What does “in expectation” mean?

Point-wise evaluations can be misleading..

..how can we be sure that ∆ is satisfied enough in the real world?
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WMC for safe AI

Y = sign (〈w ,X〉+ b)

Our model: a binarized NN
N : ZN → BM

weights w ∈ {−1, 1} and step activations
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Y = sign (〈w ,X〉+ b)

Our model: a binarized NN
N : ZN → BM

weights w ∈ {−1, 1} and step activations

1) Conversion N → ∆
trivial encoding ∆ is exponentially large
equicardinal ∆′ is found using MILP

#SAT (∆) = #SAT (∆′)

2) Prior P(X)? Reduction WMC → #SAT

Approximate 〈ε, δ〉-counting for

verifying quantitative properties!

13 / 23



WMC for safe AI

In discrete settings, WMC can be used for:

learning models that satisfy constraints by construction

learning models that satisfy constraints in expectation

verifying quantitative properties of learned models
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WMC for safe AI

In discrete settings, WMC can be used for:

learning models that satisfy constraints by construction

learning models that satisfy constraints in expectation

verifying quantitative properties of learned models

..but what about continuous or hybrid models?
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Generalizing WMC
SMT formulas

w/ algebraic constraints

χ = (0 ≤ y) ∧ (y ≤ 3) ∧ (0 ≤ x)
∧ (A→ (x ≤ 2))
∧ (¬A→ ((1 ≤ x) ∧ (x + y ≤ 3)))
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Generalizing WMC
SMT formulas

w/ algebraic constraints
+ density functions

over continuous variables

χ = (0 ≤ y) ∧ (y ≤ 3) ∧ (0 ≤ x)
∧ (A→ (x ≤ 2))
∧ (¬A→ ((1 ≤ x) ∧ (x + y ≤ 3)))

w(x , y ,A) = JAK(−x2 − y 2 + 2x + 3y)
+ J¬AK(−2x − 2y + 6)
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Weighted Model Integration

WMI(∆,w) = ∑
µ|=∆ w(µ)
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Weighted Model Integration

WMI(∆,w) = ∑
µ|=∆ w(µ) = ∑

µ|=∆
∫

µ f (x)dx

µ1 =



A
¬(1 ≤ x)

(x ≤ 2)
(x + y ≤ 3)
...

w(µ1) =
∫ 1

0

∫ 3−x

0
−x2 − y 2 + 2x + 3y dy dx

WMI(χ,w) = w(µ1)+
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Weighted Model Integration

WMI(∆,w) = ∑
µ|=∆ w(µ) = ∑

µ|=∆
∫

µ f (x)dx

µ2 =



A
(1 ≤ x)
(x ≤ 2)
(x + y ≤ 3)
...

w(µ2) =
∫ 2

1

∫ 3−x

0
−x2 − y 2 + 2x + 3y dy dx

WMI(χ,w) = w(µ1) + w(µ2)+
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Weighted Model Integration

WMI(∆,w) = ∑
µ|=∆ w(µ) = ∑

µ|=∆
∫

µ f (x)dx

µ3 =



A
¬(1 ≤ x)

(x ≤ 2)
¬(x + y ≤ 3)
...

w(µ3) =
∫ 1

0

∫ 3

3−x
−x2 − y 2 + 2x + 3y dy dx

WMI(χ,w) = w(µ1) + w(µ2) + w(µ3)+
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Weighted Model Integration

WMI(∆,w) = ∑
µ|=∆ w(µ) = ∑

µ|=∆
∫

µ f (x)dx

µ4 =



A
(1 ≤ x)
(x ≤ 2)
¬(x + y ≤ 3)
...

w(µ4) =
∫ 2

1

∫ 3

3−x
−x2 − y 2 + 2x + 3y dy dx

WMI(χ,w) = w(µ1) + w(µ2) + w(µ3) + w(µ4)+
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Weighted Model Integration

WMI(∆,w) = ∑
µ|=∆ w(µ) = ∑

µ|=∆
∫

µ f (x)dx

µ5 =



¬A
(1 ≤ x)
(x ≤ 2)
¬(x + y ≤ 3)
...

w(µ5) =
∫ 2

1

∫ 3−x

0
−2x − 2y + 6 dy dx

WMI(χ,w) = w(µ1) + w(µ2) + w(µ3) + w(µ4) + w(µ5)+
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Weighted Model Integration

WMI(∆,w) = ∑
µ|=∆ w(µ) = ∑

µ|=∆
∫

µ f (x)dx

µ6 =



¬A
(1 ≤ x)
¬(x ≤ 2)
¬(x + y ≤ 3)
...

w(µ6) =
∫ 3

2

∫ 3−x

0
−2x − 2y + 6 dy dx

WMI(χ,w) = w(µ1)+w(µ2)+w(µ3)+w(µ4)+w(µ5)+w(µ6)
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Weighted Model Integration

Two subtasks:
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Weighted Model Integration

Two subtasks:

1) Enumerating convex integration regions µ (λ-SMT)
→ as hard as #SAT (#P-complete)

2) Continuous integration
→ as hard as computing the volume of a polytope (#P-hard)

The combination of 1) and 2) makes it very tricky
→ successful ideas in WMC do not always apply

Why even bother?
- This is a very general framework!
- Many inference algorithms are specific polytime WMI “in disguise”
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Computing WMI efficiently

WMI(χ,w) =
∫ 1

0

∫ 3−x

0
fA(x , y) dy dx +

∫ 2

1

∫ 3−x

0
fA(x , y) dy dx

+
∫ 1

0

∫ 3

3−x
fA(x , y) dy dx +

∫ 2

1

∫ 3

3−x
fA(x , y) dy dx

+
∫ 2

1

∫ 3−x

0
f¬A(x , y) dy dx +

∫ 3

2

∫ 3−x

0
f¬A(x , y) dy dx
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1
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0
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∫ 3

2

∫ 3−x

0
f¬A(x , y) dy dx

=

w(µ∗1 )︷ ︸︸ ︷∫ 2

0

∫ 3

0
fA(x , y) dy dx +

w(µ∗2 )︷ ︸︸ ︷∫ 3

1

∫ 3−x

0
f¬A(x , y) dy dx
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Computing WMI efficiently
How?

Knowledge compilation
SMT oracles
Tractable subclasses
Monte Carlo estimates

19 / 23



Computing WMI efficiently
How?

Knowledge compilation
SMT oracles
Tractable subclasses
Monte Carlo estimates

Combinatorial Enumeration Integration ExpressivenessAlgorithm Exact Method Exact Sym. Method Parametric form Assumptions
WMI-CC X DPLL-SMT X LattE + CC Mul. polynomial UC
WMI-PA X DPLL-SMT X LattE Mul. polynomial -
PRAiSE X DPLL-PIMT X X PIMT Mul. polynomial -

SVE X KC-XADD X X XADD Mul. polynomial -
BR X KC-XADD X X XADD Mul. polynomial -

F-XSDD X KC-XSDD X X XADD / PSI Mul. polynomial -
WMI-SDD X KC-XSDD X Scipy / LattE Mul. polynomial -

Symbo X KC-XSDD X X PSI Mul. Gaussian UC
Sampo X KC-XSDD MC Mul. Gaussian -

SMI X AND/OR search X X univ. integration Biv. monomials BC, CNF, A
MP-WMI X MP X X Sympy Biv. polynomial BC, CNF, A
ReCoIn MP X X Sympy Biv. polynomial BC, CNF

AprxWMI-CNF hashing + SMT X LattE Mul. polynomial CNF
AprxWMI-DNF FPRAS X LattE Mul. polynomial DNF
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Research focused on theory and algorithms
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Computing WMI efficiently
How?

Knowledge compilation
SMT oracles
Tractable subclasses
Monte Carlo estimates

guided by applications in safe AI

Combinatorial Enumeration Integration ExpressivenessAlgorithm Exact Method Exact Sym. Method Parametric form Assumptions
WMI-CC X DPLL-SMT X LattE + CC Mul. polynomial UC
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WMI for safe AI

learning models that satisfy constraints by construction?
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WMI for safe AI

learning models that satisfy constraints by construction?

Structure
→ support/constraints ∆ (if not/partially given)
→ w(X; Θ) = [if ψ then w1(X; Θ1) else w2(X; Θ2)]

[w1(X1; Θ1)× w2(X2; Θ2)]
[θ1 · w1(X; Θ1) + θ2 · w2(X; Θ2)]

20 / 23



WMI for safe AI

learning models that satisfy constraints by construction?

Structure
→ support/constraints ∆ (if not/partially given)
→ w(X; Θ) = [if ψ then w1(X; Θ1) else w2(X; Θ2)]

[w1(X1; Θ1)× w2(X2; Θ2)]
[θ1 · w1(X; Θ1) + θ2 · w2(X; Θ2)]

Parameters
→ argminΘ L(Θ)
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WMI for safe AI

learning models that satisfy constraints in expectation?
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Knowledge compilation?
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WMI for safe AI

learning models that satisfy constraints in expectation?

Efficient WMI evaluation

Tractable classes?
Knowledge compilation?
Sampling?

Constraints

Logical + linear?
Nonlinear? (E = mc2)

What models to target

Piecewise polynomials?
Exponential family?

21 / 23



WMI for safe AI

verifying quantitative properties?
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WMI for safe AI

verifying quantitative properties?

Y = max(0, 〈w, X〉 + b)

∆ = (h = 〈w ,X〉+ b)
∧ ((h ≤ 0)→ (Y = 0))
∧ ((h > 0)→ (Y = h))

We can encode:
Decision trees
Support vector machines
ReLU networks
Sum-product networks
...
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WMI for safe AI

verifying quantitative properties?

Y = max(0, 〈w, X〉 + b)

∆ = (h = 〈w ,X〉+ b)
∧ ((h ≤ 0)→ (Y = 0))
∧ ((h > 0)→ (Y = h))

We can encode:
Decision trees
Support vector machines
ReLU networks
Sum-product networks
...

We can verify properties like:
Pr(Hire|Female) = Pr(Hire|Male)

(with arbitrary priors over X!)

22 / 23



WMI for safe AI

verifying quantitative properties?

Y = max(0, 〈w, X〉 + b)

∆ = (h = 〈w ,X〉+ b)
∧ ((h ≤ 0)→ (Y = 0))
∧ ((h > 0)→ (Y = h))

We can encode:
Decision trees
Support vector machines
ReLU networks
Sum-product networks
...

We can verify properties like:
Pr(Hire|Female) = Pr(Hire|Male)

(with arbitrary priors over X!)

Can we scale?

Possibly, focusing on specific models/properties!
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The final slide

WMI is a very general framework for constrained inference

...and it is not THAT scary!

There are many potential applications of WMI in safe AI

...also many algorithmic challenges (I haven’t talked about)

Thank you!

questions / feedback / collaborations are welcome!
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